概要

Un flux de travail pour l’optimisation de la formulation de nanoparticules lipidiques (LNP) à l’aide d’expériences de processus de mélange conçues et de modèles d’ensemble auto-validés (SVEM)

Published: August 18, 2023
doi:

概要

Ce protocole fournit une approche de l’optimisation de la formulation par rapport aux facteurs d’étude de mélange, continus et catégoriels qui minimise les choix subjectifs dans la construction de la conception expérimentale. Pour la phase d’analyse, une procédure d’ajustement de modélisation efficace et facile à utiliser est utilisée.

Abstract

Nous présentons une approche de style Quality by Design (QbD) pour optimiser les formulations de nanoparticules lipidiques (LNP), visant à offrir aux scientifiques un flux de travail accessible. La restriction inhérente à ces études, où les rapports molaires des lipides ionisables, auxiliaires et PEG doivent totaliser jusqu’à 100%, nécessite des méthodes de conception et d’analyse spécialisées pour tenir compte de cette contrainte de mélange. En nous concentrant sur les facteurs lipidiques et de processus couramment utilisés dans l’optimisation de la conception LNP, nous fournissons des étapes qui évitent bon nombre des difficultés qui surviennent traditionnellement dans la conception et l’analyse d’expériences de processus de mélange en utilisant des plans de remplissage d’espace et en utilisant le cadre statistique récemment développé de modèles d’ensemble auto-validés (SVEM). En plus de produire des formulations optimales candidates, le flux de travail construit également des résumés graphiques des modèles statistiques ajustés qui simplifient l’interprétation des résultats. Les formulations candidates nouvellement identifiées sont évaluées avec des cycles de confirmation et peuvent éventuellement être menées dans le cadre d’une étude de deuxième phase plus complète.

Introduction

Les formulations de nanoparticules lipidiques (LNP) pour les systèmes d’administration de gènes in vivo impliquent généralement quatre lipides constitutifs des catégories des lipides ionisables, auxiliaires et PEG 1,2,3. Que ces lipides soient étudiés seuls ou simultanément avec d’autres facteurs autres que le mélange, les expériences pour ces formulations nécessitent des conceptions de « mélange » parce que – étant donné une formulation candidate – l’augmentation ou la diminution du rapport de l’un quelconque des lipides entraîne nécessairement une diminution ou une augmentation correspondante de la somme des rapports des trois autres lipides.

À titre d’illustration, il est supposé que nous optimisons une formulation LNP qui utilise actuellement une recette définie qui sera traitée comme la référence. L’objectif est de maximiser la puissance du LNP tout en visant secondairement à minimiser la taille moyenne des particules. Les facteurs d’étude qui sont variés dans l’expérience sont les rapports molaires des quatre lipides constitutifs (ionisable, cholestérol, DOPE, PEG), le rapport N:P, le débit et le type de lipide ionisable. Les lipides ionisables et auxiliaires (y compris le cholestérol) peuvent varier sur une gamme plus large de rapports molaires, 10-60%, que le PEG, qui variera de 1 à 5% dans cette illustration. La recette de la formulation de référence et les fourchettes des autres facteurs et leur granularité arrondie sont spécifiées dans le dossier supplémentaire 1. Pour cet exemple, les scientifiques sont en mesure d’effectuer 23 essais (lots uniques de particules) en une seule journée et aimeraient l’utiliser comme taille d’échantillon s’il répond aux exigences minimales. Les résultats simulés de cette expérience sont fournis dans le dossier supplémentaire 2 et le dossier supplémentaire 3.

Rampado et Peer4 ont récemment publié un article de synthèse sur le sujet des expériences conçues pour l’optimisation des systèmes d’administration de médicaments à base de nanoparticules. Kauffman et coll.5 ont examiné les études d’optimisation de la LNP à l’aide de plans de criblage factoriels fractionnaires et définitifs6; Cependant, ces types de modèles ne peuvent pas s’adapter à une contrainte de mélange sans recourir à l’utilisation de « variables inutilisées »7 inefficaces et ne sont généralement pas utilisés lorsque des facteurs de mélange sont présents 7,8. Au lieu de cela, les « plans optimaux » capables d’incorporer une contrainte de mélange sont traditionnellement utilisés pour les expériences de processus de mélange9. Ces plans ciblent une fonction spécifiée par l’utilisateur des facteurs d’étude et ne sont optimaux (dans l’un des nombreux sens possibles) que si cette fonction saisit la véritable relation entre les facteurs de l’étude et les réponses. Il convient de noter qu’il existe une distinction dans le texte entre les « plans optimaux » et les « formulations optimales candidates », ces dernières désignant les meilleures formulations identifiées par un modèle statistique. Les conceptions optimales présentent trois inconvénients principaux pour les expériences de processus de mélange. Premièrement, si le scientifique ne parvient pas à anticiper une interaction des facteurs d’étude lors de la spécification du modèle cible, le modèle résultant sera biaisé et peut produire des formulations candidates de qualité inférieure. Deuxièmement, les conceptions optimales placent la plupart des passages sur la limite extérieure de l’espace factoriel. Dans les études LNP, cela peut conduire à un grand nombre de séries perdues si les particules ne se forment pas correctement à des extrêmes des paramètres lipidiques ou de processus. Troisièmement, les scientifiques préfèrent souvent avoir des essais expérimentaux à l’intérieur de l’espace factoriel pour obtenir un sens indépendant du modèle de la surface de réponse et observer le processus directement dans des régions auparavant inexplorées de l’espace factoriel.

Un autre principe de conception consiste à cibler une couverture approximativement uniforme de l’espace factoriel (contraint par le mélange) avec un plan de remplissaged’espace 10. Ces conceptions sacrifient une certaine efficacité expérimentale par rapport aux conceptions optimales9 (en supposant que l’espace factoriel entier conduit à des formulations valides) mais présentent plusieurs avantages dans un compromis qui sont utiles dans cette application. La conception de remplissage de l’espace ne fait pas d’hypothèses a priori sur la structure de la surface de réponse; Cela lui donne la souplesse nécessaire pour saisir les relations imprévues entre les facteurs de l’étude. Cela rationalise également la génération de conception, car il n’est pas nécessaire de prendre des décisions sur les termes de régression à ajouter ou à supprimer lorsque la taille d’exécution souhaitée est ajustée. Lorsque certains points de conception (recettes) conduisent à des formulations échouées, les plans de remplissage d’espace permettent de modéliser la limite de défaillance sur les facteurs de l’étude tout en soutenant les modèles statistiques pour les réponses à l’étude par rapport aux combinaisons de facteurs réussies. Enfin, la couverture intérieure de l’espace factoriel permet une exploration graphique indépendante du modèle de la surface de réponse.

Pour visualiser le sous-espace facteur de mélange d’une expérience de processus de mélange, des « tracés ternaires » triangulaires spécialisés sont utilisés. La figure 1 motive cet usage : dans le cube de points où trois ingrédients sont chacun autorisés à aller de 0 à 1, les points qui satisfont une contrainte que la somme des ingrédients est égale à 1 sont surlignés en rouge. La contrainte de mélange sur les trois ingrédients réduit l’espace factoriel possible à un triangle. Dans les applications LNP avec quatre ingrédients de mélange, nous produisons six diagrammes ternaires différents pour représenter l’espace factoriel en traçant deux lipides à la fois par rapport à un axe « Autres » qui représente la somme des autres lipides.

Figure 1
Figure 1 : Régions à facteurs triangulaires. Dans le diagramme de remplissage d’espace dans le cube, les petits points gris représentent des formulations qui ne sont pas cohérentes avec la contrainte de mélange. Les plus grands points rouges se trouvent sur un triangle inscrit dans le cube et représentent des formulations pour lesquelles la contrainte de mélange est satisfaite. Veuillez cliquer ici pour voir une version agrandie de cette figure.

En plus des facteurs de mélange lipidique, il existe souvent un ou plusieurs facteurs de processus continus tels que le rapport N:P, la concentration tampon ou le débit. Des facteurs catégoriques peuvent être présents, tels que le type de lipide ionisable, le type de lipide auxiliaire ou le type tampon. L’objectif est de trouver une formulation (un mélange de lipides et de paramètres pour les facteurs de processus) qui maximise une certaine mesure de la puissance et / ou améliore les caractéristiques physico-chimiques telles que la minimisation de la taille des particules et de l’indice de polydispersité, la maximisation du pourcentage d’encapsulation et la minimisation des effets secondaires – tels que la perte de poids corporel – dans les études in vivo . Même en partant d’une recette de référence raisonnable, il peut y avoir un intérêt à réoptimiser en fonction d’un changement dans la charge utile génétique ou en considérant des changements dans les facteurs de processus ou les types de lipides.

Cornell7 fournit un texte définitif sur les aspects statistiques des expériences de mélange et de processus de mélange, Myers et al.9 fournissant un excellent résumé des sujets de conception et d’analyse de mélange les plus pertinents pour l’optimisation. Cependant, ces travaux peuvent surcharger les scientifiques de détails statistiques et de terminologie spécialisée. Les logiciels modernes de conception et d’analyse d’expériences fournissent une solution robuste qui prendra suffisamment en charge la plupart des problèmes d’optimisation LNP sans avoir à faire appel à la théorie pertinente. Bien que les études plus complexes ou hautement prioritaires bénéficieront toujours de la collaboration avec un statisticien et puissent utiliser des conceptions optimales plutôt que de remplir l’espace, notre objectif est d’améliorer le niveau de confort des scientifiques et d’encourager l’optimisation des formulations LNP sans faire appel à des tests inefficaces à un facteur à la fois (OFAT)11 ou simplement se contenter de la première formulation qui satisfait aux spécifications.

Dans cet article, un flux de travail est présenté qui utilise un logiciel statistique pour optimiser un problème générique de formulation LNP, en traitant les problèmes de conception et d’analyse dans l’ordre dans lequel ils seront rencontrés. En fait, la méthode fonctionnera pour les problèmes d’optimisation généraux et ne se limite pas aux LNP. En cours de route, plusieurs questions courantes qui se posent sont abordées et des recommandations sont fournies qui sont fondées sur l’expérience et les résultatsde simulation 12. Le cadre récemment développé de modèles d’ensemble auto-validés (SVEM)13 a grandement amélioré l’approche autrement fragile de l’analyse des résultats des expériences de mélange-processus, et nous utilisons cette approche pour fournir une stratégie simplifiée d’optimisation de la formulation. Bien que le flux de travail soit construit d’une manière générale qui peut être suivie à l’aide d’autres progiciels, JMP 17 Pro est unique en ce sens qu’il offre SVEM ainsi que les outils de résumé graphique que nous avons jugés nécessaires pour simplifier l’analyse autrement obscure des expériences de processus de mélange. Par conséquent, des instructions spécifiques à JMP sont également fournies dans le protocole.

SVEM utilise la même base de modèle de régression linéaire que l’approche traditionnelle, mais elle nous permet d’éviter les modifications fastidieuses qui sont nécessaires pour ajuster un « modèle complet » d’effets candidats en utilisant une approche de base de sélection directe ou de sélection pénalisée (Lasso). En outre, SVEM fournit un ajustement amélioré du « modèle réduit » qui minimise le potentiel d’incorporation du bruit (processus plus variance analytique) qui apparaît dans les données. Il fonctionne en faisant la moyenne des modèles prédits résultant de la repondération répétée de l’importance relative de chaque exécution dans le modèle 13,14,15,16,17,18. SVEM fournit un cadre pour la modélisation des expériences de processus de mélange qui est à la fois plus facile à mettre en œuvre que la régression traditionnelle en une seule injection et donne des candidats de formulation optimale de meilleure qualité12,13. Les détails mathématiques de SVEM dépassent le cadre de cet article et même un résumé superficiel au-delà de la revue de littérature pertinente détournerait l’attention de son principal avantage dans cette application: il permet une procédure simple, robuste et précise click-to-run pour les praticiens.

Le flux de travail présenté est conforme à l’approche Quality by Design (QbD)19 du développement pharmaceutique20. Le résultat de l’étude sera une compréhension de la relation fonctionnelle qui relie les attributs des matériaux et les paramètres de procédé aux attributs de qualité critiques (AQC)21. Daniel et al.22 discutent de l’utilisation d’un cadre QbD spécifiquement pour la production de plateformes d’ARN : notre flux de travail pourrait être utilisé comme un outil dans ce cadre.

Protocol

L’expérience décrite dans la section Résultats représentatifs a été réalisée conformément au Guide sur le soin et l’utilisation des animaux de laboratoire et les procédures ont été effectuées conformément aux lignes directrices établies par notre Comité de soin et d’utilisation des animaux en établissement (IACUC). Des souris Balb/C femelles âgées de 6 à 8 semaines ont été obtenues commercialement. Les animaux ont reçu de l’eau et de l’eau standard ad libitum et ont été logés …

Representative Results

Cette approche a été validée pour les deux types de lipides largement classés : les lipides classiques de type MC3 et les lipidoïdes (par exemple, C12-200), généralement dérivés de la chimie combinatoire. Par rapport à une formulation de référence de LNP développée à l’aide d’une méthode One Factor at a Time (OFAT), les formulations candidates générées par notre flux de travail démontrent fréquemment des améliorations de puissance de 4 à 5 fois sur une échelle logarithmique, comme le montrent …

Discussion

Un logiciel moderne pour la conception et l’analyse d’expériences de processus de mélange permet aux scientifiques d’améliorer leurs formulations de nanoparticules lipidiques dans un flux de travail structuré qui évite les expériences OFAT inefficaces. L’approche de modélisation SVEM récemment développée élimine bon nombre des modifications de régression obscures et des stratégies de réduction des modèles qui auraient pu auparavant distraire les scientifiques avec des considérations statistiques ?…

開示

The authors have nothing to disclose.

Acknowledgements

Nous sommes reconnaissants à l’éditeur et aux arbitres anonymes pour les suggestions qui ont amélioré l’article.

Materials

JMP Pro 17.1 JMP Statistical Discovery LLC

参考文献

  1. Dolgin, E. Better lipids to power next generation of mRNA vaccines. Science. 376 (6594), 680-681 (2022).
  2. Hou, X., Zaks, T., Langer, R., Dong, Y. Lipid nanoparticles for mRNA delivery. Nature Reviews Materials. 6 (12), 1078-1094 (2021).
  3. Huang, X., et al. The landscape of mRNA nanomedicine. Nature Medicine. 28, 2273-2287 (2022).
  4. Rampado, R., Peer, D. Design of experiments in the optimization of nanoparticle-based drug delivery systems. Journal of Controlled Release. 358, 398-419 (2023).
  5. Kauffman, K. J., et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Letters. 15, 7300-7306 (2015).
  6. Jones, B., Nachtsheim, C. J. A class of three-level designs for definitive screening in the presence of second-order effects. Journal of Quality Technology. 43, 1-15 (2011).
  7. Cornell, J. . Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data. Wiley Series in Probability and Statistics. , (2002).
  8. Jones, B. Proper and improper use of definitive screening designs (DSDs). JMP user Community. , (2016).
  9. Myers, R., Montgomery, D., Anderson-Cook, C. . Response Surface Methodology. , (2016).
  10. Lekivetz, R., Jones, B. Fast flexible space-filling designs for nonrectangular regions. Quality and Reliability Engineering International. 31, 829-837 (2015).
  11. Czitrom, V. One-factor-at-a-time versus designed experiments. The American Statistician. 53, 126-131 (1999).
  12. Karl, A., Wisnowski, J., Rushing, H. JMP Pro 17 remedies for practical struggles with mixture experiments. JMP Discovery Conference. , (2022).
  13. Lemkus, T., Gotwalt, C., Ramsey, P., Weese, M. L. Self-validated ensemble models for design of experiments. Chemometrics and Intelligent Laboratory Systems. 219, 104439 (2021).
  14. Gotwalt, C., Ramsey, P. Model validation strategies for designed experiments using bootstrapping techniques with applications to biopharmaceuticals. JMP Discovery Conference. , (2018).
  15. Xu, L., Gotwalt, C., Hong, Y., King, C. B., Meeker, W. Q. Applications of the fractional-random-weight bootstrap. The American Statistician. 74 (4), 345-358 (2020).
  16. Ramsey, P., Levin, W., Lemkus, T., Gotwalt, C. SVEM: A paradigm shift in design and analysis of experiments. JMP Discovery Conference Europe. , (2021).
  17. Ramsey, P., Gaudard, M., Levin, W. Accelerating innovation with space filling mixture designs, neural networks and SVEM. JMP Discovery Conference. , (2021).
  18. Lemkus, T. Self-Validated Ensemble modelling. Doctoral Dissertations. 2707. , (2022).
  19. Juran, J. M. . Juran on Quality by Design: The New Steps for Planning Quality into Goods and Services. , (1992).
  20. Yu, L. X., et al. Understanding pharmaceutical quality by design. The AAPS Journal. 16, 771 (2014).
  21. Simpson, J. R., Listak, C. M., Hutto, G. T. Guidelines for planning and evidence for assessing a well-designed experiment. Quality Engineering. 25, 333-355 (2013).
  22. Daniel, S., Kis, Z., Kontoravdi, C., Shah, N. Quality by design for enabling RNA platform production processes. Trends in Biotechnology. 40 (10), 1213-1228 (2022).
  23. Scheffé, H. Experiments with mixtures. Journal of the Royal Statistical Society Series B. 20, 344-360 (1958).
  24. Brown, L., Donev, A. N., Bissett, A. C. General blending models for data from mixture experiments. Technometrics. 57, 449-456 (2015).
  25. Herrera, M., Kim, J., Eygeris, Y., Jozic, A., Sahay, G. Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery. Biomaterials Science. 9 (12), 4289-4300 (2021).
  26. Lemkus, T., Ramsey, P., Gotwalt, C., Weese, M. Self-validated ensemble models for design of experiments. ArXiv. , 2103.09303 (2021).
  27. Goos, P., Jones, B. . Optimal Design of Experiments: A Case Study Approach. , (2011).
  28. Rushing, H. DOE Gumbo: How hybrid and augmenting designs can lead to more effective design choices. JMP Discovery Conference. , (2020).

Play Video

記事を引用
Karl, A. T., Essex, S., Wisnowski, J., Rushing, H. A Workflow for Lipid Nanoparticle (LNP) Formulation Optimization using Designed Mixture-Process Experiments and Self-Validated Ensemble Models (SVEM). J. Vis. Exp. (198), e65200, doi:10.3791/65200 (2023).

View Video