يوفر هذا البروتوكول نهجا لتحسين الصياغة على عوامل الدراسة المختلطة والمستمرة والفئوية التي تقلل من الخيارات الذاتية في بناء التصميم التجريبي. بالنسبة لمرحلة التحليل ، يتم استخدام إجراء تركيب نمذجة فعال وسهل الاستخدام.
نقدم نهجا على غرار الجودة حسب التصميم (QbD) لتحسين تركيبات الجسيمات النانوية الدهنية (LNP) ، بهدف تزويد العلماء بسير عمل يمكن الوصول إليه. يتطلب التقييد المتأصل في هذه الدراسات ، حيث يجب أن تضيف النسب المولية للدهون المؤينة والمساعدة و PEG ما يصل إلى 100٪ ، طرق تصميم وتحليل متخصصة لاستيعاب قيد الخليط هذا. مع التركيز على الدهون وعوامل العملية التي يشيع استخدامها في تحسين تصميم LNP ، نقدم خطوات تتجنب العديد من الصعوبات التي تنشأ تقليديا في تصميم وتحليل تجارب عملية الخليط من خلال استخدام تصميمات ملء الفراغ واستخدام الإطار الإحصائي الذي تم تطويره مؤخرا لنماذج المجموعة ذاتية التحقق (SVEM). بالإضافة إلى إنتاج الصيغ المثلى المرشحة ، يبني سير العمل أيضا ملخصات رسومية للنماذج الإحصائية المجهزة التي تبسط تفسير النتائج. يتم تقييم التركيبات المرشحة المحددة حديثا مع عمليات التأكيد ويمكن إجراؤها اختياريا في سياق دراسة المرحلة الثانية الأكثر شمولا.
تشتمل تركيبات الجسيمات النانوية الدهنية (LNP) لأنظمة توصيل الجينات في الجسم الحي بشكل عام على أربعة دهون مكونة من فئات الدهون المؤينة والمساعدة و PEG1،2،3. سواء كانت هذه الدهون قيد الدراسة بمفردها أو في وقت واحد مع عوامل أخرى غير مخلوطة ، فإن تجارب هذه التركيبات تتطلب تصميمات “خليط” لأنه – بالنظر إلى تركيبة مرشحة – تؤدي زيادة أو تقليل نسبة أي من الليبيدات بالضرورة إلى انخفاض أو زيادة مقابلة في مجموع نسب الدهون الثلاثة الأخرى.
للتوضيح ، من المفترض أننا نقوم بتحسين صياغة LNP التي تستخدم حاليا وصفة محددة سيتم التعامل معها كمعيار. الهدف هو زيادة فاعلية LNP إلى أقصى حد بينما تهدف بشكل ثانوي إلى تقليل متوسط حجم الجسيمات. عوامل الدراسة التي تتنوع في التجربة هي النسب المولية للدهون الأربعة المكونة (المؤين ، الكوليسترول ، DOPE ، PEG) ، نسبة N: P ، معدل التدفق ، ونوع الدهون المؤينة. يسمح للدهون المؤينة والمساعدة (بما في ذلك الكوليسترول) بالاختلاف على نطاق أوسع من النسبة المولية ، 10-60٪ ، من PEG ، والتي ستختلف من 1-5٪ في هذا الرسم التوضيحي. يتم تحديد وصفة الصيغة المعيارية ونطاقات العوامل الأخرى ودقة تقريبها في الملف التكميلي 1. في هذا المثال ، يستطيع العلماء إجراء 23 عملية (دفعات فريدة من الجسيمات) في يوم واحد ويرغبون في استخدام ذلك كحجم للعينة إذا كان يفي بالحد الأدنى من المتطلبات. يتم توفير النتائج المحاكاة لهذه التجربة في الملف التكميلي 2 والملف التكميلي 3.
نشر Rampado و Peer4 ورقة مراجعة حديثة حول موضوع التجارب المصممة لتحسين أنظمة توصيل الأدوية القائمة على الجسيمات النانوية. نظر كوفمان وآخرون في دراسات تحسين LNP باستخدام تصميمات الفحص العاملي والنهائي6 ؛ ومع ذلك، لا يمكن لهذه الأنواع من التصاميم أن تستوعب قيد الخليط دون اللجوء إلى استخدام “متغيرات الركود” غير الفعالة7 ولا تستخدم عادة عند وجود عوامل الخليط 7,8. وبدلا من ذلك، تستخدم تقليديا “التصاميم المثلى” القادرة على إدراج قيد المخلوط في تجارب عمليةالخلط 9. تستهدف هذه التصميمات وظيفة يحددها المستخدم لعوامل الدراسة وتكون مثالية فقط (في واحدة من عدد من الحواس الممكنة) إذا كانت هذه الوظيفة تلتقط العلاقة الحقيقية بين عوامل الدراسة والاستجابات. ويلاحظ أن هناك تمييزا في النص بين “التصاميم المثلى” و”الصيغ المرشحة المثلى”، حيث يشير الأخير إلى أفضل الصيغ التي يحددها نموذج إحصائي. تأتي التصميمات المثلى مع ثلاثة عيوب رئيسية لتجارب عملية الخليط. أولا ، إذا فشل العالم في توقع تفاعل عوامل الدراسة عند تحديد النموذج المستهدف ، فسيكون النموذج الناتج متحيزا ويمكن أن ينتج تركيبات مرشحة أدنى. ثانيا ، تضع التصميمات المثلى معظم الأشواط على الحدود الخارجية لمساحة العامل. في دراسات LNP ، يمكن أن يؤدي ذلك إلى عدد كبير من عمليات التشغيل المفقودة إذا لم تتشكل الجسيمات بشكل صحيح في أي من طرفي الدهون أو إعدادات العملية. ثالثا ، غالبا ما يفضل العلماء إجراء عمليات تجريبية على الجزء الداخلي من فضاء العامل للحصول على إحساس مستقل عن النموذج لسطح الاستجابة ومراقبة العملية مباشرة في المناطق غير المستكشفة سابقا من فضاء العامل.
يتمثل مبدأ التصميم البديل في استهداف تغطية موحدة تقريبية لمساحة عامل (مقيدة بالمخلوط) بتصميم ملءالفراغ 10. تضحي هذه التصاميم ببعض الكفاءة التجريبية بالنسبة للتصميمات المثلى9 (على افتراض أن مساحة العامل بأكملها تؤدي إلى صيغ صالحة) ولكنها تقدم العديد من الفوائد في المقايضة المفيدة في هذا التطبيق. لا يقدم تصميم ملء الفراغ أي افتراضات مسبقة حول هيكل سطح الاستجابة ؛ وهذا يمنحها المرونة لالتقاط العلاقات غير المتوقعة بين عوامل الدراسة. يعمل هذا أيضا على تبسيط إنشاء التصميم لأنه لا يتطلب اتخاذ قرارات بشأن شروط الانحدار التي يجب إضافتها أو إزالتها عند ضبط حجم التشغيل المطلوب. عندما تؤدي بعض نقاط التصميم (الوصفات) إلى تركيبات فاشلة ، فإن تصميمات ملء الفراغ تجعل من الممكن نمذجة حدود الفشل على عوامل الدراسة مع دعم النماذج الإحصائية لاستجابات الدراسة على مجموعات العوامل الناجحة. أخيرا ، تسمح التغطية الداخلية لمساحة العامل باستكشاف رسومي مستقل عن النموذج لسطح الاستجابة.
لتصور الفضاء الفرعي لعامل الخليط لتجربة عملية الخليط ، يتم استخدام “قطع ثلاثية” مثلثة متخصصة. يحفز الشكل 1 هذا الاستخدام: في مكعب النقاط حيث يسمح لكل مكون بالنطاق من 0 إلى 1 ، يتم تمييز النقاط التي تفي بقيد أن مجموع المكونات يساوي 1 باللون الأحمر. يقلل قيد الخليط على المكونات الثلاثة من مساحة العامل الممكنة إلى مثلث. في تطبيقات LNP التي تحتوي على أربعة مكونات مخلوط ، ننتج ستة مخططات ثلاثية مختلفة لتمثيل مساحة العامل عن طريق رسم اثنين من الليبيدات في وقت واحد مقابل محور “آخر” يمثل مجموع الليبيدات الأخرى.
الشكل 1: مناطق العامل الثلاثي. في مخطط ملء الفراغ داخل المكعب ، تمثل النقاط الرمادية الصغيرة تركيبات لا تتوافق مع قيد الخليط. تقع النقاط الحمراء الأكبر على مثلث مدرج داخل المكعب وتمثل التركيبات التي يتم استيفاء قيد الخليط لها. يرجى النقر هنا لعرض نسخة أكبر من هذا الرقم.
بالإضافة إلى عوامل خليط الدهون ، غالبا ما يكون هناك عامل عملية مستمر واحد أو أكثر مثل نسبة N: P أو تركيز المخزن المؤقت أو معدل التدفق. قد تكون هناك عوامل فئوية ، مثل نوع الدهون المؤينة أو نوع الدهون المساعدة أو النوع العازل. الهدف هو إيجاد تركيبة (خليط من الدهون وإعدادات عوامل العملية) تزيد من قدر الفاعلية و / أو تحسن الخصائص الفيزيائية والكيميائية مثل تقليل حجم الجسيمات و PDI (مؤشر تعدد التشتت) ، وتعظيم نسبة التغليف ، وتقليل الآثار الجانبية – مثل فقدان وزن الجسم – في الدراسات في الجسم الحي. حتى عند البدء من وصفة مرجعية معقولة ، قد يكون هناك اهتمام بإعادة التحسين نظرا لتغيير في الحمولة الجينية أو عند النظر في التغييرات في عوامل العملية أو أنواع الدهون.
يقدم Cornell7 نصا نهائيا حول الجوانب الإحصائية لتجارب عملية الخليط والخليط ، مع تقديم Myers et al.9 ملخصا ممتازا لموضوعات تصميم وتحليل الخليط الأكثر صلة من أجل التحسين. ومع ذلك ، يمكن لهذه الأعمال أن تثقل كاهل العلماء بالتفاصيل الإحصائية والمصطلحات المتخصصة. يوفر البرنامج الحديث لتصميم التجارب وتحليلها حلا قويا يدعم بشكل كاف معظم مشاكل تحسين LNP دون الحاجة إلى مناشدة النظرية ذات الصلة. في حين أن الدراسات الأكثر تعقيدا أو ذات الأولوية العالية ستظل تستفيد من التعاون مع إحصائي وقد تستخدم تصميمات مثالية بدلا من ملء الفراغ ، فإن هدفنا هو تحسين مستوى راحة العلماء وتشجيع تحسين تركيبات LNP دون اللجوء إلى اختبار عامل واحد في كل مرة (OFAT) غير الفعال11 أو ببساطة الاستقرار على الصيغة الأولى التي تفي بالمواصفات.
في هذه المقالة ، يتم تقديم سير عمل يستخدم برنامجا إحصائيا لتحسين مشكلة صياغة LNP عامة ، ومعالجة مشكلات التصميم والتحليل بالترتيب الذي ستواجهه. في الواقع ، ستعمل الطريقة مع مشاكل التحسين العامة ولا تقتصر على LNPs. على طول الطريق ، يتم تناول العديد من الأسئلة الشائعة التي تنشأ ويتم تقديم توصيات ترتكز على التجربة وفي نتائج المحاكاة12. أدى الإطار الذي تم تطويره مؤخرا لنماذج المجموعة التي تم التحقق من صحتها ذاتيا (SVEM)13 إلى تحسين النهج الهش لتحليل النتائج من تجارب عملية الخليط ، ونحن نستخدم هذا النهج لتوفير استراتيجية مبسطة لتحسين الصياغة. بينما يتم إنشاء سير العمل بطريقة عامة يمكن اتباعها باستخدام حزم برامج أخرى ، فإن JMP 17 Pro فريد من نوعه في تقديم SVEM جنبا إلى جنب مع أدوات الملخص الرسومية التي وجدنا أنها ضرورية لتبسيط التحليل الغامض لتجارب عملية الخليط. نتيجة لذلك ، يتم توفير تعليمات خاصة ب JMP أيضا في البروتوكول.
يستخدم SVEM نفس أساس نموذج الانحدار الخطي مثل النهج التقليدي ، ولكنه يسمح لنا بتجنب التعديلات المملة المطلوبة لتناسب “النموذج الكامل” للتأثيرات المرشحة باستخدام إما الاختيار الأمامي أو الاختيار المعاقب عليه (Lasso) النهج الأساسي. بالإضافة إلى ذلك ، يوفر SVEM ملاءمة “نموذج مخفض” محسن يقلل من إمكانية دمج الضوضاء (العملية بالإضافة إلى التباين التحليلي) التي تظهر في البيانات. إنه يعمل عن طريق حساب متوسط النماذج المتوقعة الناتجة عن إعادة ترجيح الأهمية النسبية لكل تشغيل بشكل متكرر في النموذج 13،14،15،16،17،18. يوفر SVEM إطارا لنمذجة تجارب عملية الخليط التي يسهل تنفيذها من الانحدار التقليدي أحادي الطلقة وينتج عنه مرشحون أفضل جودة للصياغةالمثلى 12,13. التفاصيل الرياضية ل SVEM خارج نطاق هذه الورقة وحتى الملخص السريع الذي يتجاوز مراجعة الأدبيات ذات الصلة من شأنه أن يصرف الانتباه عن ميزته الرئيسية في هذا التطبيق: فهو يسمح بإجراء بسيط وقوي ودقيق للنقر للتشغيل للممارسين.
يتوافق سير العمل المقدم مع نهج الجودة حسب التصميم (QbD)19 لتطوير الأدوية20. ستكون نتيجة الدراسة فهما للعلاقة الوظيفية التي تربط سمات المواد ومعلمات العملية بسمات الجودة الحرجة (CQAs)21. يناقش Daniel et al.22 استخدام إطار عمل QbD خصيصا لإنتاج منصة RNA: يمكن استخدام سير العمل لدينا كأداة في هذا الإطار.
تتيح البرامج الحديثة لتصميم وتحليل تجارب عملية الخليط للعلماء تحسين تركيبات الجسيمات النانوية الدهنية في سير عمل منظم يتجنب تجارب OFAT غير الفعالة. يلغي نهج نمذجة SVEM الذي تم تطويره مؤخرا العديد من تعديلات الانحدار الغامضة واستراتيجيات تقليل النموذج التي ربما تكون قد صرفت انتباه العلماء ف?…
The authors have nothing to disclose.
نحن ممتنون للمحرر والحكام المجهولين على الاقتراحات التي حسنت المقالة.