Tyramide signal amplification during immunofluorescent staining enables the sensitive detection of phosphorylated RIPK3 and MLKL during ZBP1-induced necroptosis after HSV-1 infection.
The kinase Receptor-interacting serine/threonine protein kinase 3 (RIPK3) and its substrate mixed lineage kinase domain-like (MLKL) are critical regulators of necroptosis, an inflammatory form of cell death with important antiviral functions. Autophosphorylation of RIPK3 induces phosphorylation and activation of the pore-forming executioner protein of necroptosis MLKL. Trafficking and oligomerization of phosphorylated MLKL at the cell membrane results in cell lysis, characteristic of necroptotic cell death. The nucleic acid sensor ZBP1 is activated by binding to left-handed Z-form double-stranded RNA (Z-RNA) after infection with RNA and DNA viruses. ZBP1 activation restricts virus infection by inducing regulated cell death, including necroptosis, of infected host cells. Immunofluorescence microscopy permits the visualization of different signaling steps downstream of ZBP1-mediated necroptosis on a per-cell basis. However, the sensitivity of standard fluorescence microscopy, using current commercially available phospho-specific antibodies against human RIPK3 and MLKL, precludes reproducible imaging of these markers. Here, we describe an optimized staining procedure for serine (S) phosphorylated RIPK3 (S227) and MLKL (S358) in human HT-29 cells infected with herpes simplex virus 1 (HSV-1). The inclusion of a tyramide signal amplification (TSA) step in the immunofluorescent staining protocol allows the specific detection of S227 phosphorylated RIPK3. Moreover, TSA greatly increases the sensitivity of the detection of S358 phosphorylated MLKL. Together, this method enables the visualization of these two critical signaling events during the induction of ZBP1-induced necroptosis.
Receptor-interacting serine/threonine protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) are central regulators of necroptotic cell death1,2. Necroptosis is a lytic and inflammatory form of regulated cell death involved in antiviral immunity and autoinflammation. Necroptosis of virus-infected cells immediately shuts down virus replication. Cell lysis following necroptosis induction also releases damage-associated molecular patterns, which stimulate antiviral immunity3,4. Necroptosis is initiated by the activation of RIPK3 following RIP homotypic interaction motif (RHIM)-mediated interactions with one of three upstream activating molecules: RIPK1 (upon TNF receptor 1 [TNFR1] engagement), TIR-domain-containing adapter-inducing interferon-β (TRIF; upon Toll-like receptor 3 and 4 engagement), or the antiviral nucleic acid sensor Z-DNA binding protein 1 (ZBP1)1,2. Necroptosis signaling proceeds through a series of phosphorylation events beginning with the autophosphorylation of RIPK3. The autophosphorylation of human RIPK3 at serine (S)227 inside its kinase domain is a prerequisite for necroptosis by enabling the interaction with MLKL and is commonly used as a biochemical marker for human RIPK3 activation and necroptotic cell death1,5. Once activated, RIPK3 phosphorylates the activation loop of MLKL at threonine (T)357 and S3581. This causes a change in MLKL conformation, resulting in exposure of the N-terminal four helix bundle domain. MLKL then oligomerizes and traffics to the cell membrane where it forms a pore through the insertion of the exposed four helix bundles in the lipid bilayer, eventually leading to cell death2,6.
ZBP1 is an antiviral nucleic acid sensor that recognizes left-handed Z-form nucleic acids including double-stranded RNA in the Z-conformation (Z-RNA). Z-RNA binding occurs via two Zα-domains positioned at the N-terminus of ZBP1. Z-RNA accumulating during RNA and DNA virus infection is thought to directly engage ZBP17,8. Activated ZBP1 recruits RIPK3 through its central RHIMs and induces regulated cell death, including necroptosis9,10. Viruses have adopted numerous escape mechanisms to counteract ZBP1-induced host cell necroptosis11. For example, the herpes simplex virus 1 (HSV-1) ribonucleotide reductase subunit 1, known as ICP6 and encoded by UL39, harbors RHIM at its N-terminus that interferes with ZBP1-mediated RIPK3 activation in human cells12,13,14,15. ZBP1 not only restricts viral replication, but mouse studies have shown that ZBP1 activation causes inflammatory diseases and stimulates cancer immunity16,17,18,19,20,21. Protocols that detect signaling events occurring during ZBP1-induced necroptosis in human cells are, therefore, valuable to assess the role of ZBP1 in these processes.
Tyramide signal amplification (TSA), also referred to as catalyzed reporter deposition (CARD), has been developed to improve the limit of detection and signal-to-noise ratio in antibody-based immunoassays. During TSA, any primary antibody can be used to detect the antigen of interest. Horseradish peroxidase (HRP), coupled to a secondary antibody, catalyzes the local build-up of biotinylated tyramide radicals in the presence of hydrogen peroxide. These activated biotin-tyramide radicals then react with proximal tyrosine residues to form covalent bonds. Potential tyramide-biotin substrates include the antigen itself, the primary and secondary antibodies, and neighboring proteins. Thus, while TSA significantly improves the sensitivity of the assay, some of its spatial resolution is lost. In a final step, biotin molecules are detected using fluorescently labeled streptavidin. The HRP reaction deposits many tyramide-biotin molecules on or near the antigen of interest. This greatly increases the number of streptavidin-fluorochrome binding sites, thereby greatly amplifying the sensitivity of the assay (Figure 1). Alternatively, tyramide can be directly coupled to a fluorochrome, eliminating the need for streptavidin-coupled fluorophores. Protein immunohistochemistry and DNA/RNA in situ hybridization were among the first methods whereby TSA was employed to improve signal intensities22,23. More recently, TSA has been combined with intracellular flow cytometry24 and mass spectrometry25.
Here, we present a protocol to detect serine 227 phosphorylated human RIPK3 (p-RIPK3 [S227]) and phosphorylated human MLKL (p-MLKL [S358]) upon the activation of ZBP1 by HSV-1 infection using immunofluorescence microscopy. We use a necroptosis-sensitive HT-29 human colorectal adenocarcinoma cell line that was transduced to stably express human ZBP1. These cells were infected with an HSV-1 strain expressing a mutant ICP6 protein (HSV-1 ICP6mutRHIM) in which four core amino acids within the viral RHIM (VQCG) were replaced by alanines (AAAA), thereby rendering the ICP6 unable to block ZBP1-mediated necroptosis13,14,15. To overcome the problem of the low signal-to-noise ratio of the currently commercially available antibodies directed against p-RIPK3 and p-MLKL in immunostaining26, we perform a tyramide signal amplification (TSA) step (Figure 1), which results in the robust detection of human p-RIPK3 (S227) and improves the detection sensitivity of human p-MLKL (S358) by an order of magnitude.
1. Preparation of biotinylated tyramide
2. Maintaining HT-29 cells in culture
NOTE: ZBP1-expressing HT-29 were generated by transduction with a lentivector27 encoding human ZBP1.
3. Starting the experiment, seeding, and stimulation of the cells
4. Fixing the cells
5. Permeabilization and primary staining
6. Tyramide signal amplification (TSA)
7. Fluorophores
NOTE: Since the signal of the primary antibody is converted to a biotin-group, p-MLKL (S358) and p-RIPK3 (S227) are visualized using streptavidin coupled to a fluorophore (fluorophore 568, dilution: 1:500). Additionally, the nuclei are stained with DAPI (5 µg/mL). If a viral protein is included in the staining protocol, include a suitable fluorescently labeled secondary antibody against the host species of your primary antibody. In the representative results, a mouse anti-ICP0 was used. As a secondary antibody goat anti-mouse coupled to fluorophore 633 (dilution: 1:1,000) was included.
8. Imaging using a confocal microscope
Track | Laser | Beam splitter | Filter |
pRIPK3 (S227) /pMLKL (S358) | 561 | MBS -405 + | BP 570-620 + LP645 |
MBS 488/561/633 + SBS SP615 | |||
Viral Gene: ICP0 | 633 | MBS -405 + | BP 420-480 + LP605 |
MBS 488/561/633 + SBS LP570 | |||
Nucleus: DAPI | 405 | MBS -405 + | BP 420-480 + BP 495-550 |
MBS 488/561/633 |
Table 1: Imaging tracks for cell visualization.
9. Data analysis and quantification
The immunofluorescent detection of MLKL phosphorylation and especially RIPK3 phosphorylation in human cells is technically challenging26. We here present an improved staining protocol for human p-RIPK3 (S227) and p-MLKL (S358) upon the activation of ZBP1. The protocol includes a TSA step to improve the detection limit and sensitivity of the fluorescent signals. To validate the method, a side-by-side comparison of the TSA-mediated immunofluorescence with standard indirect fluorescent staining of both p-RIPK3 (S227) and p-MLKL (S358) was performed.
HT-29 cells expressing human ZBP1 were infected for 9 h with an ICP6 RHIM mutant HSV-1 strain (HSV-1 ICP6mutRHIM) to induce ZBP1-mediated necroptosis and RIPK3 phosphorylation. The HSV-1 ICP6mutRHIM strain carries a VQCG to AAAA mutation within the ICP6 RHIM and is unable to block necroptosis signaling downstream of ZBP114,15. As previously reported26, standard indirect immunofluorescence was not sensitive enough to visualize RIPK3 S227 phosphorylation with the current commercially available antibody, even when the laser power of the confocal microscope was increased to 30% (Figure 2A). In contrast, the inclusion of a TSA step enabled the robust detection of p-RIPK3 (S227) in the cytosol of cells infected with HSV-1 ICP6mutRHIM. The p-RIPK3 (S227) signal reached saturation when the laser power was set at 2% (Figure 2A). Quantification of the three-dimensional z-stack images (see step 9) showed an approximate 20-fold increase in the number of voxels that were positive for p-RIPK3 (S227) in HSV-1 ICP6mutRHIM-infected over mock-treated cells (Figure 2B). Omitting the primary anti-p-RIPK3 (S227) antibody from the TSA-mediated staining protocol as a no primary (NP) control did not yield a detectable signal. To visualize HSV-1 ICP6mutRHIM-infected cells, the samples were co-stained with a primary antibody directed against the immediate early viral protein ICP0 (Figure 2A). A low but detectable p-RIPK3 (S227) signal was present in the mock-treated cells, which may represent the constitutive autophosphorylation of human RIPK3 at this site5 (see the discussion). In line with a previous report28, the RHIM of ICP6 is unable to fully block RIPK3 S227 phosphorylation, as we detected increased p-RIPK3 (S227) staining of cells infected with wild-type HSV-1 (HSV-1WT; Figure 2A,B). To further validate the specificity of the p-RIPK3 (S227) signal, the cells were treated with the RIPK3 kinase inhibitor GSK'840 prior to infection. GSK'840 binds to the kinase domain of RIPK3, preventing its activity and thereby inhibiting its autophosphorylation29. GSK'840 prevented RIPK3 phosphorylation at S227 upon ZBP1 activation (Figure 2A,B), confirming the specificity of the TSA-mediated p-RIPK3 (S227) detection method.
To follow MLKL phosphorylation, an end-stage marker for necroptosis, ZBP1-expressing HT-29 cells were infected with HSV-1 ICP6mutRHIM for 8 h and 10 h. The cells were stained with an antibody against S358 phosphorylated MLKL (p-MLKL [S358]) using TSA. The mock-treated cells showed low and somewhat punctate cytosolic staining of p-MLKL (S358), while strong p-MLKL staining was detected in the cytosol, nucleus. and at the plasma membrane in the cells that were infected with HSV-1 ICP6mutRHIM (Figure 3A). Moreover, the p-MLKL (S358) signal was observed in clusters. This is in line with the pore-forming functions of activated phosphorylated MLKL oligomers at the cell membrane and its recently reported nuclear translocation upon influenza A infection1,2,6,30. As a positive p-MLKL (S358) staining control, we stimulated ZBP1-expressing HT-29 cells with a combination of TNF, the SMAC mimetic BV6, and pan-caspase inhibitor zVAD-fmk to induce TNFR1-mediated necroptosis (Figure 3A). Omitting the primary anti-p-MLKL (S358) antibody from the TSA-mediated staining protocol as a no primary control did not yield a detectable signal.
Next, we performed a side-by-side comparison of p-MLKL (S358) immunofluorescent staining with and without TSA. ZBP1-expressing HT-29 cells were infected for 9 h with HSV-1 ICP6mutRHIM. While a laser power of 40% was needed to detect a specific p-MLKL (S358) signal in the infected cells using standard indirect immunofluorescence, the TSA-treated samples already reached saturating signals at a laser power of 6% without increasing the background staining in the mock-treated samples (Figure 3B). Moreover, quantification of the three-dimensional z-stack images showed an over 10-fold increase in the number of voxels that were positive for p-MLKL (S358) when using TSA compared to standard indirect immunofluorescence. This shows that TSA improves both the detection threshold and sensitivity for p-MLKL (S358; Figure 3C).
Finally, to validate the TSA-mediated immunofluorescence protocol for other ZBP1-dependent necroptosis viral stimuli, we infected ZBP1-expressing HT-29 cells with influenza A virus (IAV) PR8 strain for 9 h. IAV induces both ZBP1-mediated apoptosis and necroptosis in human cells30. Indeed, TSA allowed the robust detection of p-RIPK3 (S227) and p-MLKL (S358), indicative of these cells undergoing necroptosis (Figure 4A–D).
Figure 1: Schematic representation of the TSA protocol. Cells are seeded and stimulated in a well plate, compatible with high-end microscopy. Afterward, the samples are fixed in 4% PFA, permeabilised and blocked to prevent aspecific binding of primary antibodies. In order to visualize phosphorylated RIPK3 (p-RIPK3 [S227]) and MLKL (p-MLKL [S358]), specific antibodies recognizing these key phosphorylation sites are incubated overnight on the imaging chamber. Next, a secondary antibody, coupled to a horse radish peroxidase (HRP), is added. This HRP group enables the activation of biotinylated tyramide in the presence of H2O2. Subsequently, the active biotin-tyramide covalently couples to tyrosine residues in close proximity to the HRP-labeled secondary antibody. These include tyrosines on the proteins of interest-in this case p-RIPK3 or p-MLKL, as indicated in the figure-and those of neighboring proteins and on the primary and secondary antibodies themselves (not shown). This tyramide signal amplification step greatly increases the sensitivity of the staining protocol. In a final step, streptavidin coupled to a fluorescent group is added to visualize the biotinylated molecules. Please click here to view a larger version of this figure.
Figure 2: HSV-1 ICP6mutRHIM induces ZBP1-dependent phosphorylation of human RIPK3 at S227. (A) Representative confocal images of human ZBP1-expressing HT-29 cells, comparing TSA staining with a standard indirect (no TSA) immunofluorescence staining protocol for p-RIPK3 (S227). The mock- and virus-infected samples (HSV-1WT or HSV-1 ICP6mutRHIM [MOI = 5]) were incubated for 9 h. As a negative control, the RIPK3 kinase inhibitor GSK'840 (1 µM) was included. A no primary (NP) staining control of cells infected with HSV-1 ICP6mutRHIM (MOI = 5) for 9 h in which both the primary anti-p-RIPK3 (S227) and ICP0 antibodies were omitted is included. The laser power necessary to detect the specific p-RIPK3 (S227) signal is indicated on the images. ICP0 was used to stain the virus-infected cells, and DAPI was used to stain the nucleus. The scale bars are 10 µm. (B) Relative quantification of p-RIPK3 (S227)+ voxels using the TSA staining protocol. Every dot represents an image, and the red bar represents the median. Voxel count values are presented relative to the median of the voxel count of images in the mock condition. Statistics were done using a one-way ANOVA with multiple comparisons using Tukey correction. p > 0.05 (n.s.), p≤ 0.05 (*), p≤ 0.01 (**). Please click here to view a larger version of this figure.
Figure 3: HSV-1 ICP6mutRHIM induces ZBP1-dependent phosphorylation of human MLKL at S358. (A) Representative confocal images of human ZBP1-expressing HT-29 cells. The cells were either mock treated or infected with HSV-1 ICP6mutRHIM (MOI = 5) for 8 h and 10 h. TSA was used to detect p-MLKL (S358). ICP0 was used to stain the virus-infected cells, and DAPI was used to stain the nucleus. A no primary (NP) staining control of cells that were infected for 10 h with HSV-1 ICP6mutRHIM (MOI = 5) in which the primary anti-p-MLKL (S358) was omitted is shown. As a positive control, the cells were stimulated for 4 h with 30 ng/mL TNF, 5 µM BV6, and 20 µM ZVAD-fmk, which induces necroptosis via TNFR1. The scale bars are 10 µm. (B) Representative confocal images of human ZBP1-expressing HT-29 cells, comparing TSA staining with a standard indirect (no TSA) immunofluorescence staining protocol for p-MLKL (S358). The cells were either mock treated or infected with HSV-1 ICP6mutRHIM (MOI = 5) for 9 h. An NP staining control of cells infected with HSV-1 ICP6mutRHIM (MOI = 5) for 9 h in which the primary anti-p-MLKL (S358) and ICP0 antibodies were omitted is included. The laser power necessary to detect the specific p-MLKL (S358) signal is indicated on the images. (C) Relative quantification of p-MLKL (S358)+ voxels using the standard (no TSA) and TSA staining protocol. Every dot represents an image, and the red bar represents the median. The voxel count values are presented relative to the median of the voxel count of images in the mock condition. Statistics were done using a one-way ANOVA with multiple comparisons using Tukey correction. p > 0.05 (n.s.), p ≤ 0.0001 (****). Please click here to view a larger version of this figure.
Figure 4: Influenza A virus induces ZBP1-dependent phosphorylation of human RIPK3 and MLKL. (A,C) Representative confocal images of human ZBP1-expressing HT-29 cells. The cells were either mock treated or infected with influenza A virus (IAV), PR8 strain (MOI = 4) for 9 h and stained for p-RIPK3 (S227; A) or p-MLKL (S358; C) using the TSA protocol. The scale bars are 10 µm. (B,D) Relative quantification of p-RIPK3 (S227)+ (B) or p-MLKL (S358; D) voxels. Every dot in (B,D) represents an image, and the red bar represents the median. The voxel count values are presented relative to the median of the voxel count of images in the mock condition. Statistics were done using a Mann-Whitney test. p≤ 0.05 (*), p ≤ 0.01 (**). Please click here to view a larger version of this figure.
This immunofluorescent staining protocol describes the use of tyramide signal amplification (TSA) to increase the sensitivity for signaling events of the human necroptotic signaling pathway that are difficult to detect, including the phosphorylation of RIPK3 and MLKL26. The inclusion of a TSA step significantly improves the detection threshold of p-RIPK3 (S227) and p-MLKL (S358) and increases the sensitivity of p-MLKL (S358) straining. TSA revealed a p-RIPK3 (S227) signal already present in the mock-treated samples. In human cells, the autophosphorylation of RIPK3 at S227 is a prerequisite for necroptosis activation by enabling a stable interaction with MLKL. This process already occurs at basal levels and results in the formation of a stable inactive p-RIPK3 (S227)/MLKL dimer prior to necroptosis induction2,5,31. Similarly, the anti-p-RIPK3 antibody used in this study also detects p-RIPK3 (S227) in untreated cells by western blotting26.
The phosphorylation of MLKL by RIPK3 within the activation loop, at T357 and S358, results in dissociation of the inactive p-RIPK3 (S227)/MLKL complex and induces a conformational change whereby MLKL exposes its N-terminal four helix bundle domain. Activated p-MLKL then oligomerizes and traffics to the cell membrane where it inserts its four helix bundles into the lipid bilayer, resulting in cell lysis1,2,6. Using this TSA immunofluorescence protocol, we detected a strong increase in S358 MLKL phosphorylation during ZBP1-induced necroptosis. p-MLKL (S358) clustered within the cytosol and at the plasma membrane and was also found within the nucleus upon ZBP1 activation. Indeed, ZBP1 has been reported to stimulate MLKL-mediated perturbation of the nuclear membrane in the context of IAV infection8,30. It should be noted, however, that TSA not only deposits biotin-tyramide on the antigen of interest and the primary/secondary antibodies but also on neighboring proteins. TSA is, therefore, not ideally suited to deduce information on the precise subcellular localization of the detected proteins, and we do not recommend TSA for co-localization studies.
Repeated freeze-thaw cycles impact the stability of the biotinylated tyramide. To prevent a decrease in signal sensitivity, we recommend to aliquot the tyramide and use a fresh aliquot for each experiment. Caution should be taken with batch-to-batch differences in the biotin-tyramide stocks. If the final concentration of biotin-tyramide is too high, non-specific background of the TSA amplification will mask the specific signal. To control for this, we recommend titrating every new biotin-tyramide batch and to include a no primary staining control in which the primary antibody is omitted.
In the presented protocol, TSA was limited to one target. The detection of phosphorylated RIPK3 and MLKL was not combined in the same staining, as both primary antibodies were raised in the same species. The protocol could be adapted to detect multiple TSA-amplified signals (e.g., p-RIPK3 [S227] and p-MLKL [S358]) within the same sample using multiplex immunofluorescent TSA32,33. Finally, TSA-mediated amplification for immunofluorescence microscopy can be used for the recognition of biomarkers of other signaling pathways with reported poor signal-to-noise ratios.
The authors have nothing to disclose.
We would like to thank the VIB Bioimaging Core for training, support, and access to the instrument park. J.N. is supported by a PhD fellowship from the Research Foundation Flanders (FWO). Research in the J.M. group was supported by an Odysseus II Grant (G0H8618N), EOS INFLADIS (40007512), a junior research grant (G031022N) from the Research Foundation Flanders (FWO), a CRIG young investigator proof-of-concept grant, and by Ghent University. Research in the P.V. group was supported by EOS MODEL-IDI (30826052), EOS INFLADIS (40007512), FWO senior research grants (G.0C76.18N, G.0B71.18N, G.0B96.20N, G.0A9322N), Methusalem (BOF16/MET_V/007), iBOF20/IBF/039 ATLANTIS, Foundation against Cancer (F/2016/865, F/2020/1505), CRIG and GIGG consortia, and VIB.
Antibodies | |||
Anti-rabbit HRP | Agilent Technologies Belgium | K4002 | Envision+ System-HRP Labelled Polymer anti-rabbit |
Goat anti-mouse DyLight 633 | Thermofisher | 35513 | Secundary antibody |
HSV-1 ICP0 | Santa Cruz | sc-53070 | Mouse anti-ICP0(HSV-1) antibody |
IAV-PR8 mouse serum | In house production | xx | Mouse anti-IAV-PR8 polyclonal antibody |
pMLKL | Abcam | ab187091 | Rabbit anti-MLKL-phospho S358 antibody |
pRIPK3 | Abcam | ab209384 | Rabbit anti-RIPK3-phospho S227 antibody |
Fluorophores | |||
DAPI | Thermofisher | D21490 | To visualise the nucleus of the cells |
Streptavidin coupled to Alexa Fluor 568 | Thermofisher | S11226 | To visulalise biotin molecules |
Compounds | |||
30% H2O2 | Sigma | H1009 | Oxidising substrate, necessary for HRP activity |
4% PFA | SANBIO | AR1068 | To fix/crosslink the cells |
Biotinyl-tyramide | R&D Systems | 6241 | To amplify signal, HRP substrate |
BV-6 | Selleckchem | S7597 | BV6 IAP Inhibitor |
For cell culture: to detach the cells | |||
8.0 g/L NaCl | |||
0.4 g/L disodium salt of EDTA | |||
EDTA 0.04% | In house formulation | 1.1 g/L Na2HPO4 | |
0.2 g/L NaH2PO4 | |||
0.2 g/L KCl | |||
0.2 g/L Glucose | |||
Fetal Bovine serum | TICO | FBS EU XXX | For cell culture, maintaining cell culture; lot number: 90439 |
GSK'840 | Aobious | AOB0917 | RIPK3 kinase inhibitor |
L-Glutamine | Sigma-Aldrich | G7513 | For cell culture, maintaining cell culture |
MAXblock | Active Motif | 15252 | Blocking solution |
PBS | Gibco | 10444402 | |
Sodium pyruvate | Sigma-Aldrich | S8636 | For cell culture, maintaining cell culture |
TNF-α | In house production | – | Signaling molecule, able to trigger cell death in combination with BV6 and zVAD |
Triton X-100 | Sigma Aldrich | T8787-50ML | To permeabilise the cells |
Trypan blue | Merck | 11732 | For cell counting, used as live/dead marker at 0,1% |
Trypsine | Sigma-Aldrich | T4424 | For cell culture: to detach the cells |
zVAD | Bachem | BACE4026865.0005 | Z-Val-Ala-DL-Asp-fluoromethylketone |
Material | |||
µ-Slide 8 well high glass bottom | iBidi | 80807 | To culture the cells |
Cotton Preping Balls-size medium | Electron Microscopy Sciences | 71001-10 | To clean the objectives |
Immersol 518 F / 30 °C | ZEISS | 444970-9000-000 | To visualise the sample at high magnifications |
Lens Cleaner | ZEISS | 000000-0105-200 | To clean the objectives |
LSM880 Fast Airyscan confocal microscope | To visualise the sample | ||
Software | |||
Excel | Office | xx | To process the data |
Prism 9 | Graphpad | xx | To analyse the data- statistical testing and graph generation |
Volocity 6.3 | Volocity | xx | To perform quantifications |
Zen black | ZEISS | xx | To aquire and process images |
Zen blue | ZEISS | xx | To visualise images |
Viruses | |||
HSV-1 (mutRHIM) F strain | produced by Dr. Jiahuai Han | in house replication | HSV-1 as a trigger for necroptosis; RHIM core domain of UL39/ICP6 is mutated (VQCG>AAAA) |
HSV-1 (WT) F strain | Produced by Dr. Jiahuai Han | in house replication | HSV-1 (WT) as a negative control for necroptosis induction (ICP6 inhibition) |
IAV PR8 | in house stock | in house replication | IAV as a trigger for necroptosis |