このプロトコルは、ゼブラフィッシュ幼虫モデルの脳室領域へのリポ多糖のマイクロインジェクションを実証し、結果として生じる神経炎症反応と神経毒性を研究します。
神経炎症は、神経変性疾患を含むさまざまな神経障害の重要なプレーヤーです。したがって、神経変性における神経炎症の役割を理解するために、代替の in vivo 神経炎症モデルを研究開発することは非常に興味深いことです。この研究では、リポ多糖(LPS)の心室マイクロインジェクションによって免疫応答と神経毒性を誘導する神経炎症の幼生ゼブラフィッシュモデルが開発され、検証されました。トランスジェニックゼブラフィッシュ系統elavl3:mCherry、ETvmat2:GFP、およびmpo:EGFPは、蛍光強度分析と統合された蛍光ライブイメージングによる脳ニューロン生存率のリアルタイム定量に使用されました。ゼブラフィッシュ幼虫の自発運動行動は、ビデオ追跡レコーダーを使用して自動的に記録されました。一酸化窒素(NO)の含有量、およびインターロイキン-6(IL-6)、インターロイキン-1β(IL-1β)、およびヒト腫瘍壊死因子α(TNF-α)を含む炎症性サイトカインのmRNA発現量を調べ、ゼブラフィッシュ幼生の頭部におけるLPS誘発免疫応答を評価しました。LPSの脳室注射後24時間で、ゼブラフィッシュの幼虫でニューロンの喪失と移動障害が観察されました。さらに、LPS誘発性神経炎症は、受精後6日目(dpf)ゼブラフィッシュ幼虫の頭部におけるNO放出およびIL-6、IL-1β、およびTNF-αのmRNA発現を増加させ、ゼブラフィッシュ脳における好中球の動員をもたらした。この研究では、ゼブラフィッシュにLPSを5 dpfで2.5〜5 mg / mLの濃度で注射することが、この薬理学的神経炎症アッセイの最適条件として決定されました。このプロトコルは、ゼブラフィッシュの幼虫にLPSを介した神経炎症と神経毒性を誘導するためのLPSの脳室マイクロインジェクションのための新しい、迅速で効率的な方法論を提示し、神経炎症の研究に有用であり、ハイスループット のin vivo 薬物スクリーニングアッセイとしても使用できる可能性があります。
神経炎症は、中枢神経系(CNS)のいくつかの神経変性疾患の病因に関与する重要な抗神経原性因子として説明されています1。病理学的侮辱に続いて、神経炎症は、神経新生の阻害および神経細胞死の誘導を含む様々な有害な結果をもたらす可能性がある2,3。炎症誘導に対する応答の根底にあるプロセスでは、複数の炎症性サイトカイン(TNF-α、IL-1β、IL-6など)が細胞外空間に分泌され、ニューロン死と神経新生の抑制に重要なコンポーネントとして機能します4,5,6。
炎症メディエーター(IL-1β、L-アルギニン、エンドトキシンなど)を脳にマイクロインジェクションすると、神経細胞の減少と神経炎症を引き起こす可能性があります7,8,9。グラム陰性菌の細胞壁に存在する病原性エンドトキシンであるリポ多糖(LPS、図1)は、動物の神経炎症を誘発し、神経変性を悪化させ、神経新生を低下させる可能性があります10。マウス脳のCNSへのLPS直接注射は、一酸化窒素、炎症誘発性サイトカイン、および他の調節因子のレベルを増加させた11。さらに、局所脳環境へのLPSの定位固定装置注射は、神経毒性分子の過剰産生を誘発し、神経機能障害およびそれに続く神経変性疾患の発症をもたらす可能性がある10、12、13、14、15。神経科学の分野では、生体の細胞および生物学的プロセスのライブおよびタイムコース顕微鏡観察は、病因と薬理作用の根底にあるメカニズムを理解するために重要です16。しかし、神経炎症と神経毒性のマウスモデルのライブイメージングは、顕微鏡の限られた光学的浸透深さによって根本的に制約され、機能イメージングと発生過程のライブ観察が妨げられます17,18,19。したがって、代替の神経炎症モデルの開発は、ライブイメージングによる病理学的発達、および神経炎症および神経変性の根底にあるメカニズムの研究を促進するために非常に興味深いものです。
ゼブラフィッシュ(Danio rerio)は、進化的に保存された自然免疫系、光透過性、大きな胚クラッチサイズ、遺伝的扱いやすさ、およびin vivoイメージングへの適合性により、神経炎症と神経変性を研究するための有望なモデルとして浮上しています19,20,21,22,23.以前のプロトコルでは、メカニズム評価なしにゼブラフィッシュ仔魚の卵黄と後脳室にLPSを直接注入するか、単にLPSを魚の水(培地)に添加して致命的な全身免疫応答を誘導していました24,25,26,27。ここでは、受精後5日目(dpf)ゼブラフィッシュ幼虫に自然免疫応答または神経毒性を引き起こすために、脳室へのLPSのマイクロインジェクションのためのプロトコルを開発しました。この応答は、注射後24時間でのゼブラフィッシュ脳におけるニューロン細胞の喪失、運動行動障害、亜硝酸塩放出の増加、炎症性遺伝子発現の活性化、および好中球の動員によって証明されます。
ますます多くの疫学的および実験的データが、神経変性疾患の可能性のある危険因子として慢性細菌およびウイルス感染に関係しています36。感染は炎症過程の活性化と宿主免疫応答を引き起こします37。応答が防御機構として作用したとしても、過剰活性化された炎症は神経新生に有害であり、炎症環境は新生児ニューロンの生存を可能にしない<sup class="…
The authors have nothing to disclose.
この研究は、マカオ特別行政区の科学技術開発基金(FDCT)からの助成金によって支援されました(文献番号。FDCT0058/2019/A1および0016/2019/AKP)、マカオ大学研究委員会(MYRG2020-00183-ICMSおよびCPG2022-00023-ICMS)、および中国国家自然科学基金会(第81803398号)。
Agarose | Sigma-Aldrich | A6361 | |
Agarose, low gelling temperature | Sigma-Aldrich | A9414 | |
Drummond Nanoject III Programmable Nanoliter Injector | Drummond Scientific | 3-000-207 | |
Fluorescence stereo microscopes | Leica | M205 FA | |
GraphPad Prism software | GraphPad Software | Ver. 7.04 | |
Lipopolysaccharides from Escherichia coli O111:B4 | Sigma-Aldrich | L3024 | |
Manual micromanipulator | World Precision Instruments | M3301 | |
Mineral oil | Sigma-Aldrich | M5904 | |
Mx3005P qPCR system | Agilent Technologies | Mx3005P | |
Nanovue plus spectrophotometer | Biochrom | 80-2140-46 | |
Nitrite concentration assay kit | Beyotime Biotechnology | S0021M | |
Phosphate-buffered saline | Sigma-Aldrich | P4417 | |
Programmable Horizontal Pipette Puller | World Precision Instruments | PMP-102 | |
PTU (N-Phenylthiourea) | Sigma-Aldrich | P7629 | |
Random primers | Takara | 3802 | |
SuperScript II Reverse Transcriptase | Invitrogen | 18064014 | |
SYBR Premix Ex Taq II kit | Accurate Biology | AG11701 | |
The 3rd Gen Tgrinder | Tiangen | OSE-Y30 | |
Thin wall glass capillaries (4”) with filament, OD 1.5 mm | World Precision Instruments | TW150F-4 | |
Tricaine (3-amino benzoic acid ethyl ester) | Sigma-Aldrich | A-5040 | |
TRNzol Universal reagent | Tiangen | DP424 | |
Zebrafish tracking box | ViewPoint Behavior Technology |