L’infection par le virus de la grippe A (IAV) active les caspases qui clivent les protéines de l’hôte et les protéines virales, qui, à leur tour, ont des fonctions provirales et antivirales. En utilisant des inhibiteurs, l’interférence ARN, la mutagénèse dirigée et des techniques de transfert Western et de RT-qPCR, les caspases dans les cellules de mammifères infectées qui clivent la cortactine de l’hôte et les histone désacétylases ont été identifiées.
Les caspases, une famille de cystéines protéases, orchestrent la mort cellulaire programmée en réponse à divers stimuli, y compris les infections microbiennes. Initialement décrite comme se produisant par apoptose, la mort cellulaire programmée est maintenant connue pour englober trois voies interconnectées: la pyroptose, l’apoptose et la nécroptose, inventées ensemble comme un seul processus, PANoptosis. L’infection virale Influence A (IAV) induit une panoptique dans les cellules de mammifères en induisant l’activation de différentes caspases, qui, à leur tour, clivent diverses protéines hôtes et virales, conduisant à des processus tels que l’activation de la réponse antivirale innée de l’hôte ou la dégradation des protéines antagonistes de l’hôte. À cet égard, le clivage médié par la caspase 3 de la cortactine de l’hôte, de l’histone désacétylase 4 (HDAC4) et de l’histone désacétylase 6 (HDAC6) a été découvert dans des cellules épithéliales animales et humaines en réponse à l’infection par le VIA. Pour démontrer cela, des inhibiteurs, des interférences ARN et une mutagénèse dirigée ont été utilisés et, par la suite, le clivage ou la résistance au clivage et la récupération des polypeptides cortactin, HDAC4 et HDAC6 ont été mesurés par transfert Western. Ces méthodes, associées à la RT-qPCR, constituent une stratégie simple mais efficace pour identifier l’hôte ainsi que les protéines virales subissant un clivage médié par la caspase lors d’une infection par le virus IAV ou d’autres virus humains et animaux. Le présent protocole élabore les résultats représentatifs de cette stratégie, et les moyens de la rendre plus efficace sont également discutés.
Le virus de la grippe A (IAV) est le membre prototypique de la famille des Orthomyxoviridae et est connu pour causer des épidémies mondiales et des pandémies imprévisibles. L’IAV provoque une maladie respiratoire humaine, la grippe, communément appelée « grippe ». La grippe est une maladie aiguë qui entraîne l’induction de réponses immunitaires innées pro et anti-inflammatoires de l’hôte et la mort des cellules épithéliales dans les voies respiratoires humaines. Les deux processus sont régis par un phénomène appelé mort cellulaire programmée1. La signalisation de la mort cellulaire programmée est induite dès que divers récepteurs de reconnaissance des agents pathogènes détectent les particules virales entrantes dans les cellules hôtes. Cela conduit à la programmation de la mort des cellules infectées et à la signalisation aux cellules saines voisines par trois voies interconnectées appelées pyroptose, apoptose et nécroptose – récemment inventées comme un seul processus, PANoptosis1.
PANoptosis implique le traitement protéolytique de nombreuses protéines hôtes et virales de l’induction à l’exécution. Un tel traitement des protéines est principalement mené par une famille de cystéines protéases appelées caspases 1,2. Jusqu’à 18 caspases (de la caspase 1 à la caspase 18) sont connues3. La plupart des caspases sont exprimées en pro-caspases et activées en subissant leur propre traitement protéolytique soit par autocatalyse, soit par d’autres caspases4 en réponse à un stimulus comme une infection virale. On pensait que la panoptique des cellules infectées par IAV était un mécanisme de défense de l’hôte, mais l’IAV a mis au point des moyens de l’échapper et de l’exploiter pour faciliter sa réplication 1,2,5,6. L’une d’entre elles consiste à antagoniser les facteurs de l’hôte par le biais d’un clivage ou d’une dégradation médiée par la caspase qui sont intrinsèquement antiviraux ou interfèrent avec l’une des étapes du cycle de vie de l’IAV. À cette fin, on a découvert que les facteurs de l’hôte, la cortactine, HDAC4 et HDAC6 subissent un clivage ou une dégradation médiée par la caspase dans les cellules épithéliales infectées par l’IAV 7,8,9. Les HDAC4 et HDAC6 sont des facteurs anti-IAV 8,10, et la cortactine interfère avec la réplication de l’IAV à un stade ultérieur de l’infection, potentiellement pendant l’assemblage viral et le bourgeonnement 11.
En outre, diverses caspases sont également activées, qui, à leur tour, clivent plusieurs protéines pour activer la réponse inflammatoire de l’hôte lors de l’infection IAV 1,2. En outre, la nucléoprotéine (NP), la protéine M2 des canaux ioniques IAV 12,13,14 et diverses protéines d’autres virus 3,15,16 subissent également un clivage médié par la caspase au cours de l’infection, ce qui influence la pathogenèse virale. Par conséquent, il existe un besoin continu d’étudier le clivage ou la dégradation médiée par la caspase des protéines de l’hôte et des protéines virales au cours de l’IAV et d’autres infections virales pour comprendre la base moléculaire de la pathogenèse virale. Ici, les méthodes sont présentées pour (1) évaluer le clivage ou la dégradation de ces protéines par les caspases, (2) identifier ces caspases, et (3) localiser les sites de clivage.
Il est établi que les virus adaptent les facteurs et les voies de l’hôte à leur avantage. À leur tour, les cellules hôtes résistent à cela en employant diverses stratégies. L’une de ces stratégies est PANoptosis, que les cellules hôtes utilisent comme stratégie antivirale contre les infections virales. Cependant, des virus comme IAV ont développé leurs propres stratégies pour contrer PANoptosis et l’exploiter à leur avantage 1,3,6<sup class="…
The authors have nothing to disclose.
L’auteur remercie Jennifer Tipper, Bilan Li, Jesse vanWestrienen, Kevin Harrod, Da-Yuan Chen, Farjana Ahmed, Sonya Mros, Kenneth Yamada, Richard Webby, le BEI Resources (NIAID), le Health Research Council of New Zealand, le Maurice and Phyllis Paykel Trust (Nouvelle-Zélande), le H.S. and J.C. Anderson Trust (Dunedin), le Département de microbiologie et d’immunologie et l’École des sciences biomédicales (Université d’Otago).
A549 cells | ATCC | CRM-CCL-185 | Human, epithelial, lung |
Ammonium chloride | Sigma-Aldrich | A9434 | |
Caspase 3 Inhibitor | Sigma-Aldrich | 264156-M | Also known as 'InSolution Caspase-3 Inhibitor II – Calbiochem' |
cOmplete, Mini Protease Inhibitor Cocktail | Roche | 11836153001 | |
Goat anti-NP antibody | Gift from Richard Webby (St Jude Children’s Research Hospital, Memphis, USA) to MH | ||
Lipofectamine 2000 Transfection Reagent | ThermoFisher Scientific | 31985062 | |
Lipofectamine RNAiMAX Transfection Reagent | ThermoFisher Scientific | 13778150 | |
MDCK cells | ATCC | CCL-34 | Dog, epithelial, kidney |
MG132 | Sigma-Aldrich | M7449 | |
Minimum Essential Medium (MEM) | ThermoFisher Scientific | 11095080 | Add L-glutamine, antibiotics or other supplements as required |
MISSION siRNA Universal Negative Control #1 | Sigma-Aldrich | SIC001 | |
Odyssey Fc imager with Image Studio Lite software 5.2 | LI-COR | Odyssey Fc has been replaced with Odyssey XF and Image Studio Lite software has been replaced with Empiria Studio software. | |
Pierce BCA Protein Assay Kit | ThermoFisher Scientific | 23225 | |
Plasmid expressing human cortactin-GFP fusion | Addgene | 50728 | Gift from Kenneth Yamada to Addgene |
Pre-designed small interferring RNA (siRNA) to caspase 3 | Sigma-Aldrich | NM_004346 | siRNA ID: SASI_Hs01_00139105 |
Pre-designed small interferring RNA to caspase 6 | Sigma-Aldrich | NM_001226 | siRNA ID: SASI_Hs01_00019062 |
Pre-designed small interferring RNA to caspase 7 | Sigma-Aldrich | NM_001227 | siRNA ID: SASI_Hs01_00128361 |
Pre-designed SYBR Green RT-qPCR Primer pairs | Sigma-Aldrich | KSPQ12012 | Primer Pair IDs: H_CASP3_1; H_CASP6_1; H_CASP7_1 |
Protran Premium nitrocellulose membrane | Cytiva (Fomerly GE Healthcare) | 10600003 | |
Rabbit anti-actin antibody | Abcam | ab8227 | |
Rabbit anti-cortactin antibody | Cell Signaling | 3502 | |
Rabbit anti-GFP antibody | Takara | 632592 | |
SeeBlue Pre-stained Protein Standard | ThermoFisher Scientific | LC5625 | |
Transfection medium, Opti-MEM | ThermoFisher Scientific | 11668019 | |
Tris-HCl, NaCl, SDS, Sodium Deoxycholate, Triton X-100 | Merck | ||
Trypsin, TPCK-Treated | Sigma-Aldrich | 4370285 |