Das Protokoll beschreibt, wie Knock-out-Myoblasten mit CRISPR/Cas9 erzeugt werden können, beginnend mit dem Design von Guide-RNAs bis hin zur zellulären Klonierung und Charakterisierung der Knock-out-Klone.
Eine wichtige Anwendung von Clustered Regulatory Interspaced Short Palindromic Repeats (CRISPR)/Cas 9 ist die Entwicklung von Knock-out-Zelllinien, insbesondere zur Untersuchung der Funktion neuer Gene / Proteine, die mit einer Krankheit assoziiert sind und während der genetischen Diagnose identifiziert wurden. Für die Entwicklung solcher Zelllinien müssen zwei Hauptprobleme entwirrt werden: das Einfügen der CRISPR-Werkzeuge (die Cas9- und die Guide-RNA) mit hoher Effizienz in die ausgewählten Zellen und die Beschränkung der Cas9-Aktivität auf die spezifische Deletion des ausgewählten Gens. Das hier beschriebene Protokoll widmet sich dem Einsetzen der CRISPR-Werkzeuge in schwer transfizierende Zellen, wie z.B. Muskelzellen. Dieses Protokoll basiert auf der Verwendung von Lentiviren, die mit öffentlich zugänglichen Plasmiden hergestellt werden und für die alle Klonierungsschritte beschrieben werden, um auf ein Gen von Interesse abzuzielen. Die Kontrolle der Cas9-Aktivität wurde unter Verwendung einer Adaption eines zuvor beschriebenen Systems namens KamiCas9 durchgeführt, bei dem die Transduktion der Zellen mit einem Lentivirus, das eine auf das Cas9 abzielende Leit-RNA kodiert, die schrittweise Abschaffung der Cas9-Expression ermöglicht. Dieses Protokoll wurde auf die Entwicklung einer RYR1-Knockout-Zelllinie für menschliche Muskeln angewendet, die auf Protein- und Funktionsebene weiter charakterisiert wurde, um den Knockout dieses wichtigen Kalziumkanals zu bestätigen, der an der intrazellulären Kalziumfreisetzung des Muskels und an der Erregungs-Kontraktionskopplung beteiligt ist. Das hier beschriebene Verfahren kann leicht auf andere Gene in Muskelzellen oder in anderen schwer zu transfektierenden Zellen angewendet werden und liefert wertvolle Werkzeuge, um diese Gene in menschlichen Zellen zu untersuchen.
Mit dem Fortschritt der Gensequenzierung und der Identifizierung von Mutationen in Genen unbekannter Funktionen in einem bestimmten Gewebe stellt die Entwicklung relevanter zellulärer Modelle zum Verständnis der Funktion eines neuen Zielgens und zur Bestätigung seiner Beteiligung an den damit verbundenen pathophysiologischen Mechanismen ein wesentliches Werkzeug dar. Darüber hinaus sind diese Modelle von großer Bedeutung für zukünftige therapeutische Entwicklungen 1,2 und stellen eine interessante Alternative zur Entwicklung von Knock-out-Tiermodellen in direkter Linie mit den internationalen Empfehlungen zur Reduzierung des Einsatzes von Tieren in Experimenten dar. Die Genbearbeitung mit CRISPR/Cas9 gehört zu den leistungsfähigsten derzeit verfügbaren Werkzeugen, was die Entwicklung vieler Knock-out/Knock-in-Modelle ermöglicht hat, und die gezielte Genvalidierung mit CRISPR/Cas9 gehört zu den am weitesten verbreiteten Anwendungen von CRISPR/Cas93. Der Erfolg der Genbearbeitung hängt von der Fähigkeit ab, die CRISPR-Werkzeuge (die Leit-RNAs und die Nuklease Cas9) in das Zielzellmodell einzuführen, was in vielen schwer zu transfizierenden Zellen wie Muskelzellen eine Herausforderung darstellen kann4. Diese Herausforderung kann mit der Verwendung von Viren, in der Regel Lentivirus, überwunden werden, die den großen Vorteil haben, viele Zelltypen effizient zu transduzieren und ihr Transgen zu liefern. Sein Hauptnachteil ist jedoch die Integration des Transgens in das Genom der Wirtszelle, was zu einer möglichen Veränderung der an der Integrationsstelle lokalisierten Gene und zur dauerhaften Expression des Transgens führt, was im Falle der Nuklease Cas9 zu schädlichen Folgen führenwürde 5. Merienne und Kollegen6 haben eine intelligente Lösung vorgeschlagen, die darin besteht, eine Guide-RNA in die Zellen einzuführen, die auf das Cas9-Gen selbst abzielt und zu einer Inaktivierung von Cas9 führt. Eine Adaption dieser Strategie wird hier als benutzerfreundliches und vielseitiges Protokoll vorgestellt, das es ermöglicht, praktisch jedes Gen in schwer zu transfizierenden Zellen auszuschalten.
Ziel des hier vorgestellten Protokolls ist es, die Inaktivierung eines interessierenden Gens in immortalisierten Muskelzellen zu induzieren. Es kann verwendet werden, um jedes Gen von Interesse in verschiedenen Arten von unsterblichen Zellen auszuschalten. Das hier beschriebene Protokoll enthält Schritte zum Design der Leit-RNAs und ihrer Klonierung in lentivirale Plasmide, zur Herstellung der CRISPR-Werkzeuge in lentiviralen Vektoren, zur Transduzierung der Zellen mit den verschiedenen Lentiviren und zum Klonen der Zellen, um eine homogene editierte Zelllinie zu erzeugen.
Unter Verwendung dieses Protokolls wurden verewigte menschliche Skelettmuskelzellen mit Deletion des Typ-1-Ryanodinrezeptors (RyR1) entwickelt, einem essentiellen Kalziumkanal, der an der intrazellulären Kalziumfreisetzung und Muskelkontraktion beteiligt ist7. Der Knock-out (KO) des Gens wurde auf Proteinebene mit Western Blot und auf funktioneller Ebene mit Kalziumbildgebung bestätigt.
Ein wichtiger Schritt auf dem Weg zur Charakterisierung von Genen unbekannter Funktion, die an Pathologien beteiligt sind, ist die Entwicklung relevanter zellulärer Modelle, um die Funktion dieser Gene zu untersuchen. Der Einsatz von Gen-Editing mit CRISPR/Cas9 ist ein exponentiell wachsendes Forschungsgebiet, und die Entwicklung von Knock-out-Modellen, wie sie hier vorgestellt werden, gehört zu den am weitesten verbreiteten Anwendungen. In diesem Zusammenhang schlagen wir hier ein vielseitiges Protokoll vor, um einen …
The authors have nothing to disclose.
Diese Arbeit wurde durch Zuschüsse der Association Française contre les myopathies (AFM-Téléthon) und der Region Auvergne-Rhône Alpes (AURA) finanziert.
Anti-CACNA1S antibody | Sigma-Aldrich | HPA048892 | Primary antibody |
Blp I | NE BioLabs | R0585S | Restriction enzyme |
CalPhos Mammalian Transfection Kit | Takara | 631312 | Transfection kit |
Easy blot anti Mouse IgG | GeneTex | GTX221667-01 | HRP secondary antibody |
Easy blot anti Rabbit IgG | GeneTex | GTX221666 | HRP secondary antibody |
Fluo-4 direct | Molecular Probes | F10472 | Calcium imaging |
GAPDH(14C10) Rabbit mAb | Cell Signaling Technology | #2118 | Primary antibody |
HindIII | Fermentas | ER0501 | Restriction enzyme |
InFusion HD Precision Plus | Takara | 638920 | Ligation kit |
MasterMix Phusion High Fidelity with GC | ThermoFisher Scientific | F532L | Mix for PCR reaction with High fidelity Taq polymerase and dNTPs |
Myosin Heavy Chain antibody | DHSB | MF20 | Primary antibody |
NucleoBond Xtra Maxi EF | Macherey-Nagel | REF 740424 | Maxipreparation kit for purification of plasmids |
NucleoSpin Gel and PCR Clean-up | Macherey-Nagel | 740609 | DNA purification |
NucleoSpin Tissue | Macherey-Nagel | 740952 | Kit for DNA extraction from cell |
One Shot Stbl3 Chemically Competent E. coli | ThermoFisher Scientific | C737303 | Chemically competent cells |
Plasmid #87904 | Addgene | 87904 | Lentiviral plasmid encoding the SpCas9 (for LV-Cas9) |
Plasmid #87919 | Addgene | 87919 | Lentiviral backbone for insertion of cassette with guides (for LV-guide-target) |
Plasmid #12260 | Addgene | 12260 | Lentiviral plasmid encoding lentiviral packaging GAG POL |
Plasmid #8454 | Addgene | 8454 | Lentiviral plasmid encoding envelope protein for producing lentiviral and MuLV retroviral particles |
V5 Tag Monoclonal Antibody | Invitrogene | R96025 | Primary antibody |
XL10-Gold Ultracompetent Cells | Agilent | 200317 | Chemically competent cells |
Xma I | NE BioLabs | R0180S | Restriction enzyme |