概要

用于从条件细胞培养基中分离细胞外囊泡的体积排阻色谱

Published: May 13, 2022
doi:

概要

这里的方案表明,可以使用尺寸排阻色谱从条件细胞培养基中充分分离细胞外囊泡。

Abstract

细胞外囊泡(EV)是纳米大小的脂膜结合结构,从所有细胞释放,存在于所有生物流体中,并含有蛋白质,核酸和脂质,这些蛋白质,核酸和脂质反映了它们来源的母细胞。将EV与样品中的其他成分适当分离可以表征其相关货物,并深入了解它们作为细胞间通讯剂和多种疾病的非侵入性生物标志物的潜力。在目前的研究中,使用最先进的技术(包括超滤和体积排阻色谱(SEC))从细胞培养基中分离出少突胶质细胞衍生的EV,以将EV与其他细胞外蛋白质和蛋白质复合物分离。使用市售的SEC色谱柱,在对照和内质网(ER)应激条件下,将EVs与人少突胶质瘤细胞释放的细胞外蛋白分离。在分数 1-4 中观察到典型的 EV 标记 CD9、CD63 和 CD81,但在分数 5-8 中未观察到。高尔基体的一种蛋白质GM130和ER的整合蛋白calnexin被用作负EV标志物,并且未在任何部分中观察到。此外,当汇集和浓缩级分 1-4 作为 EV 级分,级分 5-8 作为蛋白质级分时,观察到 EV 级分中 CD63、CD81 和 CD9 的表达。在两种馏分类型中均未观察到GM130或钙连接蛋白的表达。使用透射电子显微镜观察来自对照和ER应力条件的混合级分,并且在EV级分中观察到囊泡,但在蛋白质级分中未观察到囊泡。两种条件下的EV和蛋白质级分中的颗粒也通过纳米颗粒跟踪分析进行定量。这些数据共同表明,SEC是从条件细胞培养基中分离EV的有效方法。

Introduction

对研究细胞外囊泡(EVs)的兴趣激增,伴随着用于分离和研究这些纳米大小的异质颗粒的技术和技术的重大进步。自近四十年前发现以来1,2,这些小膜结构被发现含有生物活性脂质,核酸和蛋白质,并在细胞间通讯中起主要作用34EV从所有细胞类型中释放出来,因此存在于所有生物体液中,包括血浆和血清,唾液和尿液。这些液体中的电动汽车有望作为各种疾病的非侵入性生物标志物,包括神经炎症和神经退行性疾病、癌症和自身免疫性疾病567此外,体机理研究可以通过细胞培养技术通过分离释放到培养基中的EV来进行3,89

要了解 EV 在疾病病理生理学中的作用,与发现它们的液体充分分离至关重要。长期以来,EV分离的黄金标准一直是差示超速离心(dUC)10,但是已经出现了更复杂的技术来实现EV与其他细胞外成分的更好分离。其中一些技术包括密度梯度、不对称流场流分数 (A4F)、流式细胞术、免疫捕获、聚乙二醇沉淀和体积排阻色谱 (SEC)111213。每种技术都有自己的一套优点和缺点;然而,SEC尤其被证明可以非常有效地将EV从生物体液和细胞培养上清液中分离出来81415。SEC还有一个额外的好处,即相对简单和用户友好。

SEC是一种根据尺寸分离流体成分的方法。使用这种技术,使用树脂柱(内部制造或商业购买)对样品进行分馏。样品中的小颗粒被困在树脂内的珠子之间,而较大的颗粒能够更自由地通过树脂,从而在过程中更早地洗脱。由于 EV 的尺寸大于许多细胞外蛋白和蛋白质聚集体,因此 EV 比细胞外蛋白更快地通过色谱柱并洗脱更早的馏分14

在该方法论文中,概述了在对照和内质网(ER)应激条件下使用SEC从细胞培养基(CCM)中分离人少突胶质细胞的EV。使用该协议,表明用该技术分离的EV存在于特定的部分中,这些部分可以汇集在一起并浓缩以进行下游表征,并且分离的EV来自细胞而不是外源,例如胎牛血清(FBS)用于补充CCM。蛋白质印迹法证明 EV 级分中存在典型的 EV 标志物 CD63、CD81 和 CD916、17、1819蛋白质级分中不存在这些标志物。使用透射电子显微镜(TEM),EV被可视化并显示预期的形态,并且仅在EV部分中观察到。在对照和ER应力条件下的EV和蛋白质级分中也计数颗粒,并且在EV样品中观察到直径为50-200nm的预期尺寸范围内的大量颗粒。这些数据共同支持了SEC是从细胞培养基中分离EV的高效方法的观点。

Protocol

1. 缓冲液和试剂的制备 注意:在细胞培养罩中制作细胞培养试剂以保持无菌。 细胞培养试剂的制备通过将50mL FBS和5mL青霉素链球菌(Pen-Strep)加入500 mL高葡萄糖DMEM中并储存在4°C来制备正常的高葡萄糖DMEM。 使用该培养基培养和扩增细胞。 通过将 50 mL 去除外泌体的 FBS 和 5 mL 笔链球菌加入 500 mL 高葡萄糖 DMEM 中制备外泌体去除的高葡萄糖 DMEM?…

Representative Results

蛋白质印迹显示EV与CCM充分分离为了评估SEC从细胞培养基中分离EV的有效性,使用对照样品中的每个单独级分进行蛋白质印迹,以检测三种典型EV标志物CD9,CD63和CD81以及用作阴性对照的GM130和calnexin18的表达(图3)。还研究了白蛋白表达18 ,以确保CCM中的细胞外蛋白可以与EV充分分离。在馏分 1-4 中观察到 CD9、CD63 和 CD81 的强…

Discussion

SEC是一种用户友好的方法,用于将EV与条件CCM充分分离。为了特异性分离细胞衍生的EV,必须仔细考虑CCM的类型及其补充剂。许多细胞培养基需要补充FBS,FBS含有来自收获血清的动物的EV。这些血清 EV 可能会饱和并掩盖源自培养细胞的 EV 产生的任何信号26。因此,在进行实验时,应尽可能使用EV耗尽的FBS,以确保发现的EV可以归因于细胞衍生的EV,而不是牛衍生的EV,这可以商业购?…

開示

The authors have nothing to disclose.

Acknowledgements

作者要感谢宾夕法尼亚州立大学贝伦德和哈莫特健康基金会的资助,以及宾夕法尼亚州大学公园的宾夕法尼亚州立大学显微镜设施。

Materials

2-Mercaptoethanol VWR 97064-588
4X Laemmli Sample Buffer BioRad 1610747
Amicon Ultra-15 Centrifugal Filter Unit, Ultracel, 3 KDa, 15mL Sigma-Aldrich UFC900308 3 kDa cutoff
Amicon Ultra-2 Centrifugal Filter Unit with Ultracel-3 membrane Sigma-Aldrich UFC200324 3 kDa cutoff
Ammonium Persulfate Sigma-Aldrich A3678-100G
Anti rabbit IgG, HRP linked Antibody Cell Signaling Technology 7074V 1:1000 Dilution
Anti-Calnexin antibody Abcam  ab22595 1:500 Dilution
Anti-CD9 Mouse Monoclonal Antibody BioLegend 312102 1:500 Dilution
Anti-GM130 antibody [EP892Y] – cis-Golgi Marker Abcam ab52649 1:500 Dilution
Anti-mouse IgG, HRP-linked Antibody Cell Signaling Technology 7076V 1:1000 Dilution
Automatic Fraction Collector Izon Science
BCA assay Kit Bio-Rad
CCD camera Gatan Orius SC200
Cd63 Mouse anti Human BD 556019 1:1000 Dilution
CD81 Antibody Santa Cruz Biotechnology sc-23962 1:1000 Dilution
Cellstar Filter Cap Cell Culture Flasks Greiner Bio-One 660175
ChemiDoc MP Imager BioRad
Clarity Western ECL Substrate BioRad 1705061
deoxycholate Sigma-Aldrich D6750-10G
dithiothreitol Sigma 3483-12-3
DMEM/High glucose with L-glutamine; without sodium Cytiva SH300022.FS
Fetal Bovine Serum Premium grade VWR 97068-085
Fetal Bovine Serum, exosome-depleted Thermo Scientific A2720801
Glycine BioRad 1610718
Great Value Nonfat Dry Milk Amazon B076NRD2TZ
HOG Human Oligodendroglioma Cell Line Sigma-Aldrich SCC163
Izon Science Usa Ltd qev Size Exclusion Columns 5pk Izon Science
Methanol >99.8% ACS VWR BDH1135-4LP
Mini-PROTEAN Glass plates BioRad 1653310 with 0.75mm spacers
Mini-PROTEAN Short plates BioRad 1653308
NP-40 Sigma-Aldrich 492016
Penicillin-Streptomycin,Solution Sigma-Aldrich P4458-100mL
Phosphate Buffered Saline PBS Fisher Scientific BP66150
Pierce BCA Protein Assay Kits and Reagents Thermo Fisher Scientific 23227
Pierce PVDF Transfer Membranes Thermo Scientific 88518
Pierce Western Blotting Filter Paper Thermo Scientific 84783
Polyoxyethylene-20 (TWEEN 20), 500mL Bio Basic TB0560
Protease/phosphatase Inhibitor Cocktail (100X) Cell Signaling Technology 5872S
Recombinant Anti-TSG101 antibody [EPR7130(B)] ABCam ab125011 1:1000 dilution
Slodium hydroxide Sigma-Aldrich SX0603
Sodium azide Fisher Scientific BP922I-500
Sodium Chloride Sigma-Aldrich S9888-500G
Sodium dodecyl sulfate,≥99.0% (GC), dust-free pellets Sigma-Aldrich 75746-1KG
Tetramethylethylenediamine Sigma-Aldrich T9281-25ML
TGX Stain-Free FastCast Acrylamide Kit, 10% BioRad 1610183
Transmission Electron Microscope FEI Tecnai 12 Biotwin
Tris BioRad 1610716
Trypsin 0.25% protease with porcine trypsin, HBSS, EDTA; without calcium, magnesium Cytiva SH30042.01
Tunicamycin Tocris 3516
Zeta View software Analytik NTA software

参考文献

  1. Pan, B. T., Teng, K., Wu, C., Adam, M., Johnstone, R. M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. The Journal of Cell Biology. 101 (3), 942-948 (1985).
  2. Harding, C., Heuser, J., Stahl, P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. The Journal of Cell Biology. 97 (2), 329-339 (1983).
  3. Valadi, H., et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology. 9 (6), 654-659 (2007).
  4. Raposo, G., Stoorvogel, W. Extracellular vesicles: Exosomes, microvesicles, and friends. The Journal of Cell Biology. 200 (4), 373-383 (2013).
  5. Rontogianni, S., et al. Proteomic profiling of extracellular vesicles allows for human breast cancer subtyping. Communications Biology. 2 (1), 1-13 (2019).
  6. Lane, R. E., Korbie, D., Hill, M. M., Trau, M. Extracellular vesicles as circulating cancer biomarkers: opportunities and challenges. Clinical and Translational Medicine. 7 (1), 14 (2018).
  7. Thompson, A. G., et al. Extracellular vesicles in neurodegenerative disease-pathogenesis to biomarkers. Nature Reviews Neurology. 12 (6), 346-357 (2016).
  8. O’Brien, K., Ughetto, S., Mahjoum, S., Nair, A. V., Breakefield, X. O. Uptake, functionality, and re-release of extracellular vesicle-encapsulated cargo. Cell Reports. 39 (2), 110651 (2022).
  9. Joshi, B. S., de Beer, M. A., Giepmans, B. N. G., Zuhorn, I. S. Endocytosis of extracellular vesicles and release of their cargo from endosomes. ACS Nano. 14 (4), 4444-4455 (2020).
  10. Théry, C., Amigorena, S., Raposo, G., Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology. 30 (1), 3-22 (2006).
  11. Willms, E., Cabañas, C., Mäger, I., Wood, M. J. A., Vader, P. Extracellular vesicle heterogeneity: Subpopulations, isolation techniques, and diverse functions in cancer progression. Frontiers in Immunology. 9, 738 (2018).
  12. Tzaridis, T., et al. Extracellular vesicle separation techniques impact results from human blood samples: Considerations for diagnostic applications. International Journal of Molecular Sciences. 22 (17), 9211 (2021).
  13. Liangsupree, T., Multia, E., Riekkola, M. L. Modern isolation and separation techniques for extracellular vesicles. Journal of Chromatography A. 1636, 461773 (2021).
  14. Gámez-Valero, A., et al. Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Scientific Reports. 6 (1), 1-9 (2016).
  15. Mol, E. A., Goumans, M. J., Doevendans, P. A., Sluijter, J. P. G., Vader, P. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine: Nanotechnology, Biology, and Medicine. 13 (6), 2061-2065 (2017).
  16. Campos-Silva, C., et al. High sensitivity detection of extracellular vesicles immune-captured from urine by conventional flow cytometry. Scientific Reports. 9 (1), 2042 (2019).
  17. Norman, M., et al. L1CAM is not associated with extracellular vesicles in human cerebrospinal fluid or plasma. Nature methods. 18 (6), 631-634 (2021).
  18. Théry, C., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles. 7 (1), 1535750 (2018).
  19. Mathieu, M., et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nature Communications. 12 (1), 1-18 (2021).
  20. Guo, J., et al. Establishment of a simplified dichotomic size-exclusion chromatography for isolating extracellular vesicles toward clinical applications. Journal of Extracellular Vesicles. 10 (11), 12145 (2021).
  21. Benedikter, B. J., et al. Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. Scientific Reports. 7 (1), 1-13 (2017).
  22. Eslami, A., Lujan, J. Western blotting: sample preparation to detection. Journal of Visualized Experiments: JoVE. (44), e2359 (2010).
  23. Grassucci, R. A., Taylor, D. J., Frank, J. Preparation of macromolecular complexes for cryo-electron microscopy. Nature Protocols. 2 (12), 3239 (2007).
  24. Williams, R. L., Urbé, S. The emerging shape of the ESCRT machinery. Nature Reviews Molecular Cell Biology. 8 (5), 355-368 (2007).
  25. Willms, E., et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Scientific Reports. 6 (1), 1-12 (2016).
  26. Lehrich, B. M., Liang, Y., Fiandaca, M. S. Foetal bovine serum influence on in vitro extracellular vesicle analyses. Journal of Extracellular Vesicles. 10 (3), 12061 (2021).
  27. Kornilov, R., et al. Efficient ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum. Journal of Extracellular Vesicles. 7 (1), 1422674 (2018).
  28. Böing, A. N., et al. Single-step isolation of extracellular vesicles by size-exclusion chromatography. Journal of Extracellular Vesicles. 3 (1), (2014).
  29. Zhang, X., Borg, E. G. F., Liaci, A. M., Vos, H. R., Stoorvogel, W. A novel three step protocol to isolate extracellular vesicles from plasma or cell culture medium with both high yield and purity. Journal of Extracellular Vesicles. 9 (1), 1791450 (2020).
  30. Guerreiro, E. M., et al. Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size-exclusion chromatography. PLoS ONE. 13 (9), 02024276 (2018).
  31. Onódi, Z., et al. Isolation of high-purity extracellular vesicles by the combination of iodixanol density gradient ultracentrifugation and bind-elute chromatography from blood plasma. Frontiers in Physiology. 9, 1479 (2018).
  32. Yuana, Y., Levels, J., Grootemaat, A., Sturk, A., Nieuwland, R. Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation. Journal of Extracellular Vesicles. 3 (1), (2014).

Play Video

記事を引用
Jones, M. T., Manioci, S. W., Russell, A. E. Size Exclusion Chromatography for Separating Extracellular Vesicles from Conditioned Cell Culture Media. J. Vis. Exp. (183), e63614, doi:10.3791/63614 (2022).

View Video