概要

共聚焦显微镜测量肾上腺嗜铬细胞融合孔隙动力学的三种模式

Published: March 16, 2022
doi:

概要

该协议描述了一种共聚焦成像技术,用于检测牛肾上腺嗜铬细胞中的三种融合模式。这些融合模式包括1)闭合融合(也称为亲吻和运行),涉及融合孔隙开放和闭合,2)停留融合,涉及融合孔隙开放和维持开放孔,以及3)收缩融合,涉及融合囊泡收缩。

Abstract

动态融合孔隙打开和闭合介导胞吐和内吞作用,并确定其动力学。在这里,详细展示了共聚焦显微镜如何与膜片钳记录结合使用,以检测原代培养牛肾上腺嗜铬细胞中的三种融合模式。三种融合模式包括1)紧密融合(也称为亲吻和运行),涉及融合孔隙开放和闭合,2)停留融合,涉及融合孔隙开放并保持开放孔,以及3)收缩融合,涉及融合产生的Ω形轮廓的收缩,直到它在质膜上完全合并。

为了检测这些融合模式,通过过表达mNeonGreen标记质膜,该蛋白与磷脂酶C δ(PH-mNG)的PH结构域连接,其与磷脂酰肌醇-4,5-二磷酸(PtdIns(4,5)P2)在质膜的细胞质基质层面小叶处结合;囊泡加载荧光假神经递质FFN511以检测囊泡内容物的释放;并将Atto 655包含在浴液中以检测熔融孔隙闭合。在活嗜铬细胞中以每帧约20-90 ms的速度同时对这三种荧光探针进行成像,以检测融合孔隙开放,含量释放,融合孔闭合和融合囊泡尺寸变化。描述了分析方法以将三种融合模式与这些荧光测量区分开来。原则上,这里描述的方法可以应用于嗜铬细胞以外的许多分泌细胞。

Introduction

膜融合介导许多生物学功能,包括突触传递,血糖稳态,免疫反应和病毒进入123。胞吐作用涉及质膜处的囊泡融合,释放神经递质和激素以实现许多重要功能,例如神经元网络活动。融合打开一个孔以释放囊泡内容物,之后孔隙可能关闭以取回融合的囊泡,这被称为亲吻和运行14。不可逆和可逆的融合孔隙开口都可以通过细胞附着的电容记录与单个囊泡融合的融合孔隙电导记录来测量。

这通常被解释为反映全塌陷融合,涉及融合的扩张,直到融合囊泡变平,以及吻和运行,涉及融合孔隙的开放和闭合,分别为5678910111213.最近在染色质细胞中的共聚焦和受激辐射耗尽(STED)成像研究直接观察到融合孔隙开放和闭合(吻和运行,也称为紧密融合),融合孔隙开放,长时间保持具有开放孔隙的Ω形,称为停留融合,以及融合囊泡的收缩,直到它与质膜完全合并,这取代了完全塌陷融合,用于将融合囊泡与质膜合并4814151617.

在神经元中,已经通过成像检测到融合孔的开放和闭合,显示预装在大于融合孔的囊泡中的量子点的释放,并且在神经末梢释放面51819处具有融合孔导率测量。肾上腺嗜铬细胞被广泛用作研究外吞和内吞作用的模型2021。虽然嗜铬细胞含有大的致密核心囊泡,而突触含有小的突触囊泡,但嗜铬细胞和突触中的胞吐作用和内吞作用蛋白非常相似10,111220212223

在这里,描述了一种使用共聚焦成像方法结合牛肾上腺嗜铬细胞电生理学来测量这三种融合模式的方法(图1)。该方法涉及将荧光假神经递质(FFN511)加载到囊泡中以检测胞吐作用;在浴液中加入Atto 655(A655)以填充融合产生的Ω形轮廓,并用磷脂酶C δ(PH)的PH结构域标记质膜,该结构域在质膜81524处与PtdIns(45)P2结合。聚变孔隙动力学可以通过不同荧光强度的变化来检测。虽然描述了嗜铬细胞,但这里描述的这种方法的原理可以广泛应用于许多分泌细胞,远远超出嗜铬细胞。

Protocol

注意:动物使用程序遵循NIH指南,并已获得NIH动物护理和使用委员会的批准。 1. 牛嗜铬细胞培养 在嗜铬细胞培养前1天准备Locke的溶液(表1)和高压灭菌工具。 在培养日从当地的屠宰场获取牛肾上腺,并在解剖前将它们浸没在冰冷的Locke溶液中。注意:肾上腺来自21-27个月大,健康,黑人安格斯,男女皆宜(主要是男性),体重约为…

Representative Results

按照图1和图2所示的实验程序,用PH-mNG转染来自牛肾上腺的嗜铬细胞以标记质膜;将A655加入到熔池溶液中以检测熔融孔隙闭合;并将荧光假神经递质FFN511加载到囊泡中以检测释放。接下来,在细胞底部(Z焦平面~细胞膜上方约100-200nm)每20-90 ms对FFN511,PH-mNG和A655进行XY平面共聚焦延时成像。进行全细胞膜片钳记录和应用从-80至+ 10 mV的1s去极化以唤起外吞和?…

Discussion

描述了一种共聚焦显微成像方法,用于检测牛肾上腺嗜铬细胞中融合孔隙和递质释放的动力学,以及三种融合模式,即紧密融合,停留融合和收缩融合424。描述了一种电生理学方法,用于使细胞去极化,从而唤起外吞和内吞作用。系统共聚焦图像处理提供有关聚变和裂变事件的不同孔隙行为模式的信息。

同时监测具有全细胞结构…

開示

The authors have nothing to disclose.

Acknowledgements

我们感谢NINDS校内研究计划(ZIA NS003009-13和ZIA NS003105-08)支持这项工作。

Materials

Adenosine 5'-triphosphate magnesium salt Sigma A9187-500MG ATP for preparing internal solution
Atto 655 ATTO-TEC GmbH AD 655-21 Atto dye to label bath solution
Basic Nucleofector for Primary Neurons Lonza VSPI-1003 Electroporation transfection buffer along with kit
Boroscilicate capillary glass pipette Warner Instruments 64-0795 Standard wall with filament OD=2.0 mm ID=1.16 mm Length=7.5 cm
Bovine serum albumin Sigma A2153-50G Reagent for gland digestion
Calcium Chloride 2 M Quality Biological 351-130-721 Reagent for preparing bath solution
Cell Strainers, 100 µm Falcon 352360 Material for filtering chromaffin cell suspension
Cesium hydroxide solution Sigma 232041 Reagent for preparing internal solution and Cs-glutamate/Cs-EGTA stock buffer
Collagenase P Sigma 1.1214E+10 Enzyme for gland digestion
Coverslip Neuvitro GG-14-Laminin GG-14-Laminin, 14 mm dia.#1 thick 60 pieces Laminin coated German coverslips
D-(+)-Glucose Sigma G8270-1KG Reagent for preparing Locke’s solution and bath solution
DMEM ThermoFisher Scientific 11885092 Reagent for preparing culture medium
EGTA Sigma 324626-25GM Reagent for preparing Cs-EGTA stock buffer for bath solution
Electroporation and Nucleofector Amaxa Biosystems Nucleofector II Transfect plasmids into cells
Fetal bovine serum ThermoFisher Scientific 10082147 Reagent for preparing culture medium
FFN511 Abcam ab120331 Fluorescent false neurotransmitter to label vesicles
Guanosine 5'-triphosphate sodium salt hydrate Sigma G8877-250MG GTP for preparing internal solution
HEPES Sigma H3375-500G Reagent for preparing Locke’s solution
Igor Pro WaveMetrics Igor pro Software for patch-clamp analysis and imaging data presentation
Leica Application Suite X software Leica LAS X software Confocal software for imaging data collection and analysis
Leica TCS SP5 Confocal Laser Scanning Microscope Leica Leica TCS SP5 Confocal microscope for imaging data collection
L-Glutamic acid Sigma 49449-100G Reagent for preparing Cs-glutamate stock buffer for bath solution
Lock-in amplifier Heka Lock-in Software for capacitance recording
Magnesium Chloride 1 M Quality Biological 351-033-721EA Reagent for preparing internal solution and bath solution
Metallized Hemacytometer Hausser Bright-Line Hausser Scientific 3120 Counting chamber
Microforge Narishige MF-830 Polish pipettes to enhance the formation and stability of giga-ohm seals
Millex-GP Syringe Filter Unit, 0.22 µm Millipore SLGPR33RB Material for glands wash and digestion
mNG(mNeonGreen) Allele Biotechnology ABP-FP-MNEONSB Template for PH-mNeonGreen construction
Nylon mesh filtering screen 100 micron EIKO filtering co 03-100/32 Material for filtering medulla suspension
Patch clamp EPC-10 Heka EPC-10 Amplifier for patch-clamp data collection
PH-EGFP Addgene Plasmid #51407 Backbone for PH-mNeonGreen construction
Pipette puller Sutter Instrument P-97 Make pipettes for patch-clamp recording
Potassium Chloride Sigma P5404-500G Reagent for preparing Locke’s solution and bath solution
Pulse software Heka Pulse Software for patch-clamp data collection
Recording chamber Warner Instruments 64-1943/QR-40LP coverslip chamber, apply patch-clamp pipette on live cells
Sodium chloride Sigma S7653-1KG Reagent for preparing Locke’s solution, bath solution and internal solution
Sodium hydroxide Sigma S5881-500G Reagent for preparing Locke’s solution
Sodium phosphate dibasic Sigma S0876-500G Reagent for preparing Locke’s solution
Sodium phosphate monobasic Sigma S8282-500G Reagent for preparing Locke’s solution
Stirring hot plate Barnsted/Thermolyne type 10100 Heater for pipette coating with wax
Syringe, 30 mL Becton Dickinson 302832 Material for glands wash and digestion
Tetraethylammonium chloride Sigma T2265-100G TEA for preparing bath solution
Trypsin inhibitor Sigma T9253-5G Reagent for gland digestion
Type F Immersion liquid Leica 195371-10-9 Leica confocal mounting oil

参考文献

  1. Wu, L. G., Hamid, E., Shin, W., Chiang, H. C. Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annual Review of Physiology. 76, 301-331 (2014).
  2. Chang, C. W., Chiang, C. W., Jackson, M. B. Fusion pores and their control of neurotransmitter and hormone release. Journal of General Physiology. 149 (3), 301-322 (2017).
  3. Harrison, S. C. Viral membrane fusion. Nature Structural & Molecular Biology. 15 (7), 690-698 (2008).
  4. Zhao, W. D., et al. Hemi-fused structure mediates and controls fusion and fission in live cells. Nature. 534 (7608), 548-552 (2016).
  5. Klyachko, V. A., Jackson, M. B. Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature. 418 (6893), 89-92 (2002).
  6. Albillos, A., et al. The exocytotic event in chromaffin cells revealed by patch amperometry. Nature. 389 (6650), 509-512 (1997).
  7. He, L., Wu, X. S., Mohan, R., Wu, L. G. Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature. 444 (7115), 102-105 (2006).
  8. Chiang, H. C., et al. Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles. Nature Communications. 5, 3356 (2014).
  9. Sharma, S., Lindau, M. The fusion pore, 60 years after the first cartoon. Federation of European Biochemical Societies Letters. 592 (21), 3542-3562 (2018).
  10. Jorgacevski, J., et al. Munc18-1 tuning of vesicle merger and fusion pore properties. Journal of Neuroscience. 31 (24), 9055-9066 (2011).
  11. Rituper, B., et al. Vesicle cholesterol controls exocytotic fusion pore. Cell Calcium. 101, 102503 (2021).
  12. Gucek, A., et al. Dominant negative SNARE peptides stabilize the fusion pore in a narrow, release-unproductive state. Cellular and Molecular Life Sciences. 73 (19), 3719-3731 (2016).
  13. Grabner, C. P., Moser, T. Individual synaptic vesicles mediate stimulated exocytosis from cochlear inner hair cells. Proceedings of the National Academy of Sciences of the United States of America. 115 (50), 12811-12816 (2018).
  14. Wen, P. J., et al. Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane. Nature Communications. 7, 12604 (2016).
  15. Shin, W., et al. Visualization of Membrane Pore in Live Cells Reveals a Dynamic-Pore Theory Governing Fusion and Endocytosis. Cell. 173 (4), 934-945 (2018).
  16. Shin, W., et al. Vesicle Shrinking and Enlargement Play Opposing Roles in the Release of Exocytotic Contents. Cell Reports. 30 (2), 421-431 (2020).
  17. Ge, L., Shin, W., Wu, L. -. G. Visualizing sequential compound fusion and kiss-and-run in live excitable cells. bioRxiv. , (2021).
  18. Zhang, Q., Li, Y., Tsien, R. W. The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science. 323 (5920), 1448-1453 (2009).
  19. He, L., Wu, X. S., Mohan, R., Wu, L. G. Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature. 444 (7115), 102-105 (2006).
  20. Androutsellis-Theotokis, A., Rubin de Celis, M. F., Ehrhart-Bornstein, M., Bornstein, S. R. Common features between chromaffin and neural progenitor cells. Molecular Psychiatry. 17 (4), 351 (2012).
  21. Bornstein, S. R., et al. Chromaffin cells: the peripheral brain. Molecular Psychiatry. 17 (4), 354-358 (2012).
  22. Park, Y., Kim, K. T. Short-term plasticity of small synaptic vesicle (SSV) and large dense-core vesicle (LDCV) exocytosis. Cellular Signalling. 21 (10), 1465-1470 (2009).
  23. Thahouly, T., Niedergang, F., Vitale, N., Gasman, S. Bovine Chromaffin Cells: Culture and Fluorescence Assay for Secretion. Exocytosis and Endocytosis. Methods in Molecular Biology. 2233, (2021).
  24. Shin, W., et al. Preformed Omega-profile closure and kiss-and-run mediate endocytosis and diverse endocytic modes in neuroendocrine chromaffin cells. Neuron. 109 (19), 3119-3134 (2021).
  25. O’Connor, D. T., et al. Primary culture of bovine chromaffin cells. Nature Protocols. 2 (5), 1248-1253 (2007).
  26. Wu, X. S., et al. Membrane Tension Inhibits Rapid and Slow Endocytosis in Secretory Cells. Biophysical Journal. 113 (11), 2406-2414 (2017).
  27. Revelo, N. H., et al. A new probe for super-resolution imaging of membranes elucidates trafficking pathways. Journal of Cell Biology. 205 (4), 591-606 (2014).
  28. Gao, J., Liao, J., Yang, G. -. Y. CAAX-box protein, prenylation process and carcinogenesis. American journal of translational research. 1 (3), 312-325 (2009).
  29. Schermelleh, L., et al. Super-resolution microscopy demystified. Nature Cell Biology. 21 (1), 72-84 (2019).
  30. Ceccarelli, B., Hurlbut, W. P., Mauro, A. Depletion of vesicles from frog neuromuscular junctions by prolonged tetanic stimulation. Journal of Cell Biology. 54 (1), 30-38 (1972).
  31. Rust, M. J., Bates, M., Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods. 3 (10), 793-795 (2006).
  32. Betzig, E., et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 313 (5793), 1642-1645 (2006).
  33. Fish, K. N. Total internal reflection fluorescence (TIRF) microscopy. Current Protocols in Cytometry. , 18 (2009).
  34. Schmidt, R., et al. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nature Communications. 12 (1), 1478 (2021).

Play Video

記事を引用
Han, S., Wang, X., Cordero, N., Wu, L. Confocal Microscopy to Measure Three Modes of Fusion Pore Dynamics in Adrenal Chromaffin Cells. J. Vis. Exp. (181), e63569, doi:10.3791/63569 (2022).

View Video