概要

原子力显微镜研究活拟 南芥 根表皮细胞的物理性质

Published: March 31, 2022
doi:

概要

原子力显微镜压痕方案提供了剖析组织或器官的特定细胞的细胞壁在正常或受限生长期间(即缺水)的物理性质的作用的可能性。

Abstract

这里描述了一种通过原子力显微镜(AFM)与光学倒置荧光显微镜耦合的纳米压痕来表征活拟南芥根表皮细胞细胞壁的物理特性的方法。该方法包括在测量其变形的同时对样品施加受控力,允许量化参数,例如亚细胞分辨率下的细胞壁表观杨氏模量。它需要仔细地机械固定样品,并正确选择压头和压痕深度。虽然它只能用于外部组织,但这种方法允许表征发育过程中植物细胞壁的机械变化,并使这些微观变化与整个器官的生长相关联。

Introduction

植物细胞被细胞壁包围,细胞壁是由多糖,蛋白质,代谢物和水的相互作用网络组成的复杂结构,其厚度从0.1到几μm不等,具体取决于细胞类型和生长阶段12。细胞壁的机械性能在植物的生长中起着至关重要的作用。细胞壁的低刚度值已被提出作为细胞生长和细胞壁扩张的先决条件,并且越来越多的证据表明,所有细胞都感觉到机械力来执行其功能。然而,细胞壁物理性质的变化是否决定了细胞命运234仍然存在争议。由于植物细胞在发育过程中不会移动,因此器官的最终形状取决于细胞扩张的距离和方向。因此,拟南芥根是研究细胞壁物理性质对细胞扩张影响的良好模型,因为不同类型的扩张发生在根的不同区域。例如,各向异性扩张在伸长区很明显,在表皮细胞中尤其明显5。

这里描述的方法用于使用原子力显微镜(AFM)与倒置荧光相位显微镜6相结合,在活拟南芥根的纳米尺度上表征表皮细胞细胞壁的物理性质。有关AFM技术的广泛修订,请阅读789

该协议概述了基于AFM的植物细胞壁弹性测量的基本样品制备方法和通用方法。

Figure 1
图1:使用原子力显微镜(AFM)在拟南芥根中力压痕实验的示意图。 该方案概述了力压痕实验的步骤,从制备底物到牢固地固定根样品(1-2),通过碘化丙啶染色确认根系活力(3),悬臂定位在初级根的细长表皮细胞表面上(4-5),力曲线测量(6)和力曲线处理以计算表观杨氏模量(7-8)。EZ:伸长区。 请点击此处查看此图的大图。

Protocol

1. 植物材料和生长条件的制备 为了产生所需的植物材料,对拟南芥野生型和感兴趣的突变系的种子进行灭菌。注意:在此协议中,我们使用了以下内容: ttl1: T-DNA插入线Salk_063943(用于 TTL1;AT1G53300) – 哥伦比亚-0 ( Col-0 ) 野生型; Procuste1 (prc1-1 ) 突变体,由 CESA6 基因 (AT5G64740) 中的敲除突变 (Q720stop) 组成,如前所述 1…

Representative Results

力压痕实验以下文本提供了进行力压痕实验时预期的一些结果,以显示协议执行良好时预期的典型输出。 力-位移曲线图2显示了在根伸长区细胞中心的位置压进活样品获得的代表性力压痕 图。当AFM尖端开始压进细胞壁表面时,由于细胞壁对变形的抵抗,力开始增加( 图2A中的1表示)。力(载荷)的?…

Discussion

细胞和细胞壁力学对于深入了解力学如何影响生长过程变得越来越重要。随着物理力在固体组织中传播相当长的距离,研究细胞壁物理性质的变化以及它们如何被感知、控制、调整和影响植物的生长正在成为一个重要的研究领域238

本文提出了一种研究拟南芥根伸长区细胞壁物理性质的方法。AFM技术?…

開示

The authors have nothing to disclose.

Acknowledgements

这项研究由CSIC I + D 2018资助,资助号95(Mariana Sotelo Silveira)。CSIC Grupos(Omar Borsani)和PEDECIBA。

Materials

1 x Phosphate-Buffered Saline (PBS) Include sodium chloride and phosphate buffer and is formulated to prevent osmotic shock and maintain water balance in living cells.
AFM software Bruker, Billerica, MA, USA
Atomic force microscopy (AFM) BioScope Catalyst, Bruker, Billerica, MA, USA
Catalyst Probe holder-fluid Bruker, Billerica, MA, USA CAT-FCH A probe holder for the Bioscope Catalyst, designed for fluid operation in contact or Tapping Mode.  Also compatible with air operation.
Cryoscopic osmometer; model OSMOMAT 030 Gonotech, Berlin, Germany
Murashige & Skoog Medium Duchess Biochemie M0221 Original concentration, (1962)
Optical inverted microscope coupled to the AFM Olympus IX81, Miami, FL, USA
PEGAMIL ANAEROBICOS S.R.L., Buenos Aires, Argentina 100429 Neutral, non acidic silicone glue
Petri dishes Deltalab 200201.B Polystyrene, 55 x 14 mm, radiation sterile.
Propidium iodide Sigma P4170 For root viability test.
Silicon nitride probe, DNP-10, cantilever A Bruker, Billerica, MA, USA DNP-10/A For force modulation microscopy in liquid operation. Probe tip radius of 20-60 nm. 175-μm-long triangular cantilever,  with a spring constant of 0.35 N/m.
Tweezers Sigma T4537

参考文献

  1. Anderson, C. T., Kieber, J. J. Dynamic construction, perception, and remodeling of plant cell walls. Annual Review of Plant Biology. 71, 39-69 (2020).
  2. Roeder, A. H. K., et al. Fifteen compelling open questions in plant cell biology. The Plant Cell. 34 (1), 72-102 (2022).
  3. Zhang, B., Gao, Y., Zhang, L., Zhou, Y. The plant cell wall: Biosynthesis, construction, and functions. Journal of Integrative Plant Biology. 63 (1), 251-272 (2021).
  4. Hamant, O., Haswell, E. S. Life behind the wall: Sensing mechanical cues in plants. BMC Biology. 15 (59), 1-9 (2017).
  5. Scheres, B., Benfey, P., Dolan, L. Root development. The Arabidopsis Book. 1, 0101 (2002).
  6. Cuadrado-Pedetti, M. B., et al. The arabidopsis tetratricopeptide thioredoxin-like 1 gene is involved in anisotropic root growth during osmotic stress adaptation. Genes. 12 (2), 236 (2021).
  7. Milani, P., Braybrook, S. A., Boudaoud, A. Shrinking the hammer: micromechanical approaches to morphogenesis. Journal of Experimental Botany. 64 (15), 4651-4662 (2013).
  8. Braybrook, S. A. Measuring the elasticity of plant cells with atomic force microscopy. Methods in Cell Biology. 125, 237-254 (2015).
  9. Bidhendi, A. J., Geitmann, A. Methods to quantify primary plant cell wall mechanics. Journal of Experimental Botany. 70 (14), 3615-3648 (2019).
  10. Desnos, T., et al. Procuste1 mutants identify two distinct genetic pathways controlling hypocotyl cell elongation, respectively in dark- and light-grown Arabidopsis seedlings. Development. 122 (2), 683-693 (1996).
  11. Fagard, M., et al. Procuste1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of arabidopsis. The Plant Cell. 12 (12), 2409-2423 (2000).
  12. Murashige, T., Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum. 15 (3), 473-497 (1962).
  13. Perilli, S., Sabatini, S. Analysis of root meristem size development. Methods in Molecular Biology. 655, 177-187 (2010).
  14. Sader, J. E., et al. A virtual instrument to standardise the calibration of atomic force microscope cantilevers. Review of Scientific Instruments. 87 (9), 093711 (2016).
  15. Collinsworth, A. M., Zhang, S., Kraus, W. E., Truskey, G. A. Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation. American Journal of Physiology – Cell Physiology. 283 (4), 1219-1227 (2002).
  16. Mathur, A. B., Collinsworth, A. M., Reichert, W. M., Kraus, W. E., Truskey, G. A. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. Journal of Biomechanics. 34 (12), 1545-1553 (2001).
  17. Sirghi, L., Ponti, J., Broggi, F., Rossi, F. Probing elasticity and adhesion of live cells by atomic force microscopy indentation. European Biophysics Journal. 37 (6), 935-945 (2008).
  18. Peaucelle, A. AFM-based mapping of the elastic properties of cell walls: At tissue, cellular, and subcellular resolutions. Journal of Visualized Experiments: JoVE. (89), e51317 (2014).
  19. Peaucelle, A., et al. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Current Biology. 21 (20), 1720-1726 (2011).
  20. Fernandes, A. N., et al. Mechanical properties of epidermal cells of whole living roots of Arabidopsis thaliana: An atomic force microscopy study. Physical Review E. 85 (2), 21916 (2012).

Play Video

記事を引用
Rauschert, I., Benech, J. C., Sainz, M., Borsani, O., Sotelo-Silveira, M. Atomic Force Microscopy to Study the Physical Properties of Epidermal Cells of Live Arabidopsis Roots. J. Vis. Exp. (181), e63533, doi:10.3791/63533 (2022).

View Video