概要

基于开放搜索的方法在 鲍曼不动杆菌 O-连锁糖肽鉴定中的应用

Published: November 02, 2021
doi:

概要

开放式搜索能够鉴定用先前未知的聚糖组合物修饰的糖肽。在本文中,提出了一种简化的方法,用于进行开放搜索和随后以聚糖为重点的糖肽搜索,用于使用 鲍曼不动杆菌 作为模型的细菌样品。

Abstract

蛋白质糖基化越来越被认为是细菌生物体内的常见修饰,有助于原核生理学和致病物种的最佳感染性。因此,人们对表征细菌糖基化的兴趣越来越大,并且需要高通量分析工具来识别这些事件。虽然自下而上的蛋白质组学很容易产生丰富的糖肽数据,但在原核生物物种中观察到的聚糖的广度和多样性使得细菌糖基化事件的鉴定极具挑战性。

传统上,在细菌蛋白质组学数据集中手动测定聚糖组成,使得这在很大程度上是一种定制的分析,仅限于特定领域的专家。最近,基于开放式搜索的方法已成为识别未知修饰的强大替代方案。通过分析在肽序列上观察到的独特修饰的频率,开放式搜索技术允许鉴定复杂样品中附着在肽上的常见聚糖。本文介绍了用于解释和分析糖蛋白组学数据的简化工作流程,演示了如何在不事先了解聚糖组合物的情况下使用开放式搜索技术来鉴定细菌糖肽。

使用这种方法,可以快速鉴定样品中的糖肽以了解糖基化差异。使用 鲍曼不动杆菌 作为模型,这些方法能够比较菌株之间的聚糖组成并鉴定新的糖蛋白。综上所述,这项工作证明了开放式数据库搜索技术在鉴定细菌糖基化方面的多功能性,使这些高度多样化的糖蛋白组的表征比以往任何时候都更容易。

Introduction

蛋白质糖基化是将碳水化合物附着在蛋白质分子上的过程,是自然界中最常见的翻译后修饰(PTMs)之一12。在生命的所有领域,一系列复杂的机器已经进化出来,致力于产生糖蛋白,影响无数的细胞功能1345。虽然蛋白质糖基化发生在一系列氨基酸67上, 但N-连接和 O-链接糖基化事件是自然界中观察到的两种主要形式。 N-连锁糖基化涉及聚糖连接到天冬酰胺(Asn)残基的氮原子上,而在 O-连锁糖基化中,聚糖连接到丝氨酸(Ser),苏氨酸(Thr)或酪氨酸(Tyr)残基7的氧原子上。尽管糖基化系统所针对的残基相似,但附着在蛋白质上的聚糖内部的差异导致糖基化是自然界中发现的化学多样性最高的PTM类。

虽然真核糖基化系统具有聚糖多样性,但这些系统通常被限制使用的独特碳水化合物的数量。由此产生的多样性源于这些碳水化合物如何排列成聚糖89101112。相比之下,细菌和古菌物种具有几乎无限的聚糖多样性,因为这些系统内产生的独特糖阵列210,1314151617在生命领域观察到的聚糖多样性的这些差异代表了糖基化事件的表征和鉴定的重大分析挑战。对于真核糖基化,预测聚糖组成的能力促进了对糖生物学日益增长的兴趣;然而,细菌糖基化的情况并非如此,它仍然在很大程度上局限于由专业实验室进行研究。随着质谱(MS)仪器在生物科学中的可及性增加,基于MS的方法现在是糖蛋白组学分析的主要方法。

MS已成为表征糖基化的典型工具,现在通常使用自上而下和自下而上的方法来表征糖蛋白6。虽然自上而下的蛋白质组学用于评估特定蛋白质的全局糖基化模式1819,但自下而上的方法用于实现糖肽的聚糖特异性表征,即使来自复杂的混合物620212223。对于糖肽的分析,信息片段化信息的产生对于糖基化事件的表征至关重要2425。现在,仪器上通常可以使用一系列碎片化方法,包括基于共振离子阱的碰撞诱导解离(IT-CID),光束型碰撞诱导解离(CID)和电子转移解离(ETD)。每种方法在糖肽分析方面具有不同的优点和缺点2526,在过去的十年中,在应用这些片段化方法分析糖基化方面取得了重大进展620。然而,对于细菌糖基化分析,关键限制不是片段糖肽的能力,而是无法预测样品中潜在的聚糖组成。在这些系统中,多种细菌聚糖的未知性质限制了糖肽的鉴定,即使使用以糖基化为重点的搜索工具现在在真核糖肽的分析中也很常见,例如O-Pair27,GlycopeptideGraphMS28和GlycReSoft29。为了克服这个问题,需要一种替代的搜索方法,使用开放搜索工具成为研究细菌糖基化30的强大方法。

开放搜索,也称为盲或通配符搜索,允许识别具有未知或意外PTMs2130,3132的肽。开放搜索利用各种计算技术,包括精选修改搜索、多步数据库搜索或宽质量容忍搜索3334353637。尽管开放搜索具有巨大的潜力,但与限制搜索相比,其使用通常受到分析时间的显着增加和未修饰肽检测灵敏度损失的阻碍3132。未修饰肽光谱匹配(PSM)检测的减少是与这些技术相关的假阳性PSM率增加的结果,这需要增加严格的过滤以保持所需的错误发现率(FDR)3334353637.最近,已经出现了几种工具,可以显着提高开放搜索的可访问性,包括Byonic3138,Open-pFind39,ANN-SoLo40和MSFragger2141。这些工具通过显著缩短分析时间并实施处理异质聚糖组合物的方法,能够可靠地鉴定糖基化事件。

本文提出了一种通过开放搜索鉴定细菌糖肽的简化方法,以革兰氏阴性院内病原体鲍曼不动杆菌为模型。鲍曼尼具有保守的O-连接糖基化系统,负责修饰多种蛋白质底物,称为PglL蛋白质糖基化系统424344。虽然类似的蛋白质是菌株之间糖基化的目标,但由于用于蛋白质糖基化的聚糖的生物合成来自胶囊位点(称为K-位点)44,4546PglL糖基化系统是高度可变的。这导致来自单个或有限聚合K单元的多种聚糖(也称为K单元)被添加到蛋白质底物304446中。在这项工作中,使用开放搜索工具MSfragger,在软件FragPipe中,用于鉴定鲍曼氏菌菌株中的聚糖。通过结合开放搜索和手动管理,可以进行“聚糖重点搜索”,以进一步改善细菌糖肽的鉴定。总之,这种多步骤鉴定方法能够在没有丰富经验的新型糖基化事件表征方面鉴定糖肽。

Protocol

注意:细菌糖肽样品的制备和分析可分为四个部分(图1)。对于这项研究,评估了三种测序 鲍曼氏菌菌株的糖基化(表1)。这些菌株中的每一种的蛋白质组FASTA数据库都可以通过Uniprot访问。有关此协议中使用的缓冲液的组成,请参阅 表 2 。 1. 蛋白质组学分析用蛋白质样品的制备 分离感兴趣的蛋白?…

Representative Results

为了说明开放搜索细菌糖肽分析的效用,评估了鲍曼氏菌-AB307-0294,ACICU和D1279779-3株中O-连接聚糖的化学多样性。O-连接的糖蛋白组在鲍曼氏菌菌株之间是高度可变的,因为用于糖基化的聚糖来自高度可变的胶囊位点44,45,46。这种化学多样性使鲍曼氏菌成为开放式搜索研究的理想模型系统。虽…

Discussion

开放式搜索是识别未知修饰的有效和系统的方法。虽然在细菌蛋白质组样品中鉴定未知聚糖传统上是一项耗时且技术上专业化的工作,但最近开发的工具如MSfragger2141 和Byonic3138 现在能够快速有效地鉴定δ团块,以进一步表征为附着在肽上的潜在聚糖。对标准和富含糖肽的蛋白质组样品进行开放搜索可以鉴…

開示

The authors have nothing to disclose.

Acknowledgements

N.E.S.由澳大利亚研究委员会未来奖学金(FT200100270)和ARC发现项目赠款(DP210100362)提供支持。我们感谢Bio21分子科学和生物技术研究所的墨尔本质谱和蛋白质组学设施对MS仪器的使用。

Materials

14 G Kel-F Hub point style 3 Hamilton company hanc90514
2-Chloroacetamide Sigma Aldrich Pty Ltd C0267-100G
Acetonitrile Sigma Aldrich Pty Ltd 34851-4L
Ammonium hydroxide (28%) Sigma Aldrich Pty Ltd 338818-100ML
BCA Protein Assay Reagent A Pierce 23228
BCA Protein Assay Reagent B Pierce 23224
C8 Empore SPE Sigma Aldrich Pty Ltd 66882-U An alterative vendor for C8 material is Affinisep (https://www.affinisep.com/about-us/)
Formic acid Sigma Aldrich Pty Ltd 5.33002
Isopropanol Sigma Aldrich Pty Ltd 650447-2.5L
Methanol Fisher Chemical M/4058/17
SDB-RPS Empore SPE (Reversed-Phase Sulfonate) Sigma Aldrich Pty Ltd 66886-U An alterative vendor for SDB-RPS is Affinisep (https://www.affinisep.com/about-us/)
Sodium Deoxycholate Sigma Aldrich Pty Ltd D6750-100G
ThermoMixer C Eppendorf 2232000083
trifluoroacetic acid Sigma Aldrich Pty Ltd 302031-10X1ML
Tris 2-carboxyethyl phosphine hydrochloride Sigma Aldrich Pty Ltd C4706-2G
Tris(hydroxymethyl)aminomethane Sigma Aldrich Pty Ltd 252859-500G
Trypsin/Lys-C protease mixture Promega V5073
Vacuum concentrator Labconco 7810040
ZIC-HILIC material Merck 1504580001 Resin for use in single use SPE columns can be obtain by emptying a larger form column and using the free resin

参考文献

  1. Varki, A., et al. . Essentials of glycobiology. , (2015).
  2. Schaffer, C., Messner, P. Emerging facets of prokaryotic glycosylation. FEMS Microbiology Reviews. 41 (1), 49-91 (2017).
  3. Abu-Qarn, M., Eichler, J., Sharon, N. Not just for Eukarya anymore: Protein glycosylation in bacteria and archaea. Current Opinion in Structural Biology. 18 (5), 544-550 (2008).
  4. Szymanski, C. M., Yao, R., Ewing, C. P., Trust, T. J., Guerry, P. Evidence for a system of general protein glycosylation in Campylobacter jejuni. Molecular Microbiology. 32 (5), 1022-1030 (1999).
  5. Koomey, M. O-linked protein glycosylation in bacteria: snapshots and current perspectives. Current Opinion in Structural Biology. 56, 198-203 (2019).
  6. Riley, N. M., Bertozzi, C. R., Pitteri, S. J. A pragmatic guide to enrichment strategies for mass spectrometry-based glycoproteomics. Molecular & Cellular Proteomics: MCP. 20, 100029 (2020).
  7. Spiro, R. G. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology. 12 (4), 43-56 (2002).
  8. Hu, H., Khatri, K., Klein, J., Leymarie, N., Zaia, J. A review of methods for interpretation of glycopeptide tandem mass spectral data. Glycoconjugate Journal. 33 (3), 285-296 (2016).
  9. Moremen, K. W., Tiemeyer, M., Nairn, A. V. Vertebrate protein glycosylation: Diversity, synthesis and function. Nature Reviews Molecular Cell Biology. 13 (7), 448-462 (2012).
  10. Bohm, M., et al. Glycosciences.DB: An annotated data collection linking glycomics and proteomics data (2018 update). Nucleic Acids Research. 47, 1195-1201 (2019).
  11. Kawano, S., Hashimoto, K., Miyama, T., Goto, S., Kanehisa, M. Prediction of glycan structures from gene expression data based on glycosyltransferase reactions. バイオインフォマティクス. 21 (21), 3976-3982 (2005).
  12. McDonald, A. G., Tipton, K. F., Davey, G. P. A knowledge-based system for display and prediction of O-glycosylation network behaviour in response to enzyme knockouts. PLOS Computational Biology. 12 (4), 1004844 (2016).
  13. Eichler, J., Koomey, M. Sweet new roles for protein glycosylation in prokaryotes. Trends in Microbiology. 25 (8), 662-672 (2017).
  14. Scott, N. E., et al. Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Molecular & Cellular Proteomics: MCP. 10 (2), (2011).
  15. Russo, T. A., et al. The K1 capsular polysaccharide of Acinetobacter baumannii strain 307-0294 is a major virulence factor. Infection and Immunity. 78 (9), 3993-4000 (2010).
  16. Szymanski, C. M., Wren, B. W. Protein glycosylation in bacterial mucosal pathogens. Nature Reviews Microbiology. 3 (3), 225-237 (2005).
  17. Imperiali, B. Bacterial carbohydrate diversity – a brave new world. Current Opinion in Chemical Biology. 53, 1-8 (2019).
  18. Caval, T., Buettner, A., Haberger, M., Reusch, D., Heck, A. J. R. Discrepancies between high-resolution native and glycopeptide-centric mass spectrometric approaches: A case study into the glycosylation of erythropoietin variants. Journal of the American Society for Mass Spectrometry. 32 (8), 2099-2104 (2021).
  19. Caval, T., Heck, A. J. R., Reiding, K. R. Meta-heterogeneity: Evaluating and describing the diversity in glycosylation between sites on the same glycoprotein. Molecular & Cellular Proteomics: MCP. 20, 100010 (2020).
  20. Thomas, D. R., Scott, N. E. Glycoproteomics: growing up fast. Current Opinion in Structural Biology. 68, 18-25 (2020).
  21. Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D., Nesvizhskii, A. I. MSFragger: Ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nature Methods. 14 (5), 513-520 (2017).
  22. Cao, W., et al. Recent advances in software tools for more generic and precise intact glycopeptide analysis. Molecular & Cellular Proteomics: MCP. , (2021).
  23. Yu, A., et al. Advances in mass spectrometry-based glycoproteomics. Electrophoresis. 39 (24), 3104-3122 (2018).
  24. Reiding, K. R., Bondt, A., Franc, V., Heck, A. J. R. The benefits of hybrid fragmentation methods for glycoproteomics. Trends in Analytical Chemistry. 108, 260-268 (2018).
  25. Riley, N. M., Malaker, S. A., Driessen, M., Bertozzi, C. R. Optimal dissociation methods differ for N- and O-glycopeptides. Journal of Proteome Research. 19 (8), 3286-3301 (2020).
  26. Mao, Y., et al. Systematic evaluation of fragmentation methods for unlabeled and isobaric mass tag-labeled O-glycopeptides. Analytical Chemistry. 93 (32), 11167-11175 (2021).
  27. Lu, L., Riley, N. M., Shortreed, M. R., Bertozzi, C. R., Smith, L. M. O-Pair Search with MetaMorpheus for O-glycopeptide characterization. Nature Methods. 17 (11), 1133-1138 (2020).
  28. Choo, M. S., Wan, C., Rudd, P. M., Nguyen-Khuong, T. GlycopeptideGraphMS: Improved glycopeptide detection and identification by exploiting graph theoretical patterns in mass and retention time. Analytical Chemistry. 91 (11), 7236-7244 (2019).
  29. Maxwell, E., et al. GlycReSoft: a software package for automated recognition of glycans from LC/MS data. PLoS One. 7 (9), 45474 (2012).
  30. Ahmad Izaham, A. R., Scott, N. E. Open database searching enables the identification and comparison of bacterial glycoproteomes without defining glycan compositions prior to searching. Molecular & Cellular Proteomics: MCP. 19 (9), 1561-1574 (2020).
  31. Bern, M., Kil, Y. J., Becker, C. Byonic: Advanced peptide and protein identification software. Current Protocols in Bioinformatics. , (2012).
  32. Na, S., Bandeira, N., Paek, E. Fast multi-blind modification search through tandem mass spectrometry. Molecular & Cellular Proteomics: MCP. 11 (4), 010199 (2012).
  33. Creasy, D. M., Cottrell, J. S. Error tolerant searching of uninterpreted tandem mass spectrometry data. Proteomics. 2 (10), 1426-1434 (2002).
  34. Craig, R., Beavis, R. C. TANDEM: Matching proteins with tandem mass spectra. バイオインフォマティクス. 20 (9), 1466-1467 (2004).
  35. Ahrné, E., Nikitin, F., Lisacek, F., Müller, M. QuickMod: A tool for open modification spectrum library searches. Journal of Proteome Research. 10 (7), 2913-2921 (2011).
  36. Shortreed, M. R., et al. Global identification of protein post-translational modifications in a single-pass database search. Journal of Proteome Research. 14 (11), 4714-4720 (2015).
  37. Chick, J. M., et al. A mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun proteomics as modified peptides. Nature Biotechnology. 33 (7), 743-749 (2015).
  38. Roushan, A., et al. Peak filtering, peak annotation, and wildcard search for glycoproteomics. Molecular & Cellular Proteomics: MCP. 20, 100011 (2020).
  39. Chi, H., et al. Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine. Nature Biotechnology. , (2018).
  40. Bittremieux, W., Laukens, K., Noble, W. S. Extremely fast and accurate open modification spectral library searching of high-resolution mass spectra using feature hashing and graphics processing units. Journal of Proteome Research. 18 (10), 3792-3799 (2019).
  41. Polasky, D. A., Yu, F., Teo, G. C., Nesvizhskii, A. I. Fast and comprehensive N- and O-glycoproteomics analysis with MSFragger-Glyco. Nature Methods. 17 (11), 1125-1132 (2020).
  42. Harding, C. M., et al. Acinetobacter strains carry two functional oligosaccharyltransferases, one devoted exclusively to type IV pilin, and the other one dedicated to O-glycosylation of multiple proteins. Molecular Microbiology. 96 (5), 1023-1041 (2015).
  43. Iwashkiw, J. A., et al. Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathogens. 8 (6), 1002758 (2012).
  44. Scott, N. E., et al. Diversity within the O-linked protein glycosylation systems of Acinetobacter species. Molecular & Cellular Proteomics: MCP. 13 (9), 2354-2370 (2014).
  45. Kenyon, J. J., Hall, R. M. Variation in the complex carbohydrate biosynthesis loci of Acinetobacter baumannii genomes. PLoS One. 8 (4), 62160 (2013).
  46. Lees-Miller, R. G., et al. A common pathway for O-linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii. Molecular Microbiology. 89 (5), 816-830 (2013).
  47. Iacono, M., et al. Whole-genome pyrosequencing of an epidemic multidrug-resistant Acinetobacter baumannii strain belonging to the European clone II group. Antimicrobial Agents and Chemotherapy. 52 (7), 2616-2625 (2008).
  48. Hamidian, M., et al. Insights from the revised complete genome sequences of Acinetobacter baumannii strains AB307-0294 and ACICU belonging to global clones 1 and 2. Microbial Genomics. 5 (10), 000298 (2019).
  49. Farrugia, D. N., et al. The complete genome and phenome of a community-acquired Acinetobacter baumannii. PLoS One. 8 (3), 58628 (2013).
  50. Keller, B. O., Sui, J., Young, A. B., Whittal, R. M. Interferences and contaminants encountered in modern mass spectrometry. Analytica Chimica Acta. 627 (1), 71-81 (2008).
  51. Batth, T. S., et al. Protein aggregation capture on microparticles enables multipurpose proteomics sample preparation. Molecular & Cellular Proteomics: MCP. 18 (5), 1027-1035 (2019).
  52. HaileMariam, M., et al. S-Trap, an ultrafast sample-preparation approach for shotgun proteomics. Journal of Proteome Research. 17 (9), 2917-2924 (2018).
  53. Smith, P. K., et al. Measurement of protein using bicinchoninic acid. Analytical Biochemistry. 150 (1), 76-85 (1985).
  54. Rappsilber, J., Mann, M., Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature Protocols. 2 (8), 1896-1906 (2007).
  55. Harney, D. J., et al. Proteomic analysis of human plasma during intermittent fasting. Journal of Proteome Research. 18 (5), 2228-2240 (2019).
  56. Scott, N. E. Characterizing glycoproteins by mass spectrometry in Campylobacter jejuni. Methods in Molecular Biology. 1512, 211-232 (2017).
  57. Bian, Y., et al. Robust microflow LC-MS/MS for proteome analysis: 38000 runs and counting. Analytical Chemistry. 93 (8), 3686-3690 (2021).
  58. Diedrich, J. K., Pinto, A. F., Yates, J. R. Energy dependence of HCD on peptide fragmentation: stepped collisional energy finds the sweet spot. Journal of the American Society for Mass Spectrometry. 24 (11), 1690-1699 (2013).
  59. Liu, M. Q., et al. pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification. Nature Communications. 8 (1), 438 (2017).
  60. Hinneburg, H., et al. The art of destruction: Optimizing collision energies in quadrupole-time of flight (Q-TOF) instruments for glycopeptide-based glycoproteomics. Journal of the American Society for Mass Spectrometry. 27 (3), 507-519 (2016).
  61. Chambers, M. C., et al. A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology. 30 (10), 918-920 (2012).
  62. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. , (2020).
  63. Brademan, D. R., Riley, N. M., Kwiecien, N. W., Coon, J. J. Interactive peptide spectral annotator: A versatile web-based tool for proteomic applications. Molecular & Cellular Proteomics: MCP. 18, 193-201 (2019).
  64. Russo, T. A., et al. The K1 capsular polysaccharide from Acinetobacter baumannii is a potential therapeutic target via passive immunization. Infection and Immunity. 81 (3), 915-922 (2013).
  65. Senchenkova, S. N., et al. Structure of the capsular polysaccharide of Acinetobacter baumannii ACICU containing di-N-acetylpseudaminic acid. Carbohydrate Research. 391, 89-92 (2014).
  66. Domon, B., Costello, C. E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate Journal. 5 (4), 397-409 (1988).
  67. Harvey, D. J., Dwek, R. A., Rudd, P. M. Determining the structure of glycan moieties by mass spectrometry. Current Protocols in Protein Science. , (2006).
  68. Medzihradszky, K. F., Kaasik, K., Chalkley, R. J. Characterizing sialic acid variants at the glycopeptide level. Analytical Chemistry. 87 (5), 3064-3071 (2015).
  69. Kelstrup, C. D., Frese, C., Heck, A. J., Olsen, J. V., Nielsen, M. L. Analytical utility of mass spectral binning in proteomic experiments by SPectral Immonium Ion Detection (SPIID). Molecular & Cellular Proteomics:MCP. 13 (8), 1914-1924 (2014).
  70. Ahmad Izaham, A. R., et al. What are we missing by using hydrophilic enrichment? Improving bacterial glycoproteome coverage using total proteome and FAIMS analyses. Journal of Proteome Research. 20 (1), 599-612 (2021).
  71. Neue, K., Mormann, M., Peter-Katalinic, J., Pohlentz, G. Elucidation of glycoprotein structures by unspecific proteolysis and direct nanoESI mass spectrometric analysis of ZIC-HILIC-enriched glycopeptides. Journal of Proteome Research. 10 (5), 2248-2260 (2011).
  72. Mysling, S., Palmisano, G., Hojrup, P., Thaysen-Andersen, M. Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics. Analytical Chemistry. 82 (13), 5598-5609 (2010).
  73. Escobar, E. E., et al. Precision mapping of O-Linked N-acetylglucosamine sites in proteins using ultraviolet photodissociation mass spectrometry. Journal of the American Chemical Society. 142 (26), 11569-11577 (2020).
  74. Madsen, J. A., et al. Concurrent automated sequencing of the glycan and peptide portions of O-linked glycopeptide anions by ultraviolet photodissociation mass spectrometry. Analytical Chemistry. 85 (19), 9253-9261 (2013).
  75. Lysiak, A., Fertin, G., Jean, G., Tessier, D. Evaluation of open search methods based on theoretical mass spectra comparison. BMC Bioinformatics. 22, 65 (2021).
  76. Pabst, M., et al. A general approach to explore prokaryotic protein glycosylation reveals the unique surface layer modulation of an anammox bacterium. ISME Journal. , (2021).

Play Video

記事を引用
Lewis, J. M., Coulon, P. M. L., McDaniels, T. A., Scott, N. E. The Application of Open Searching-based Approaches for the Identification of Acinetobacter baumannii O-linked Glycopeptides. J. Vis. Exp. (177), e63242, doi:10.3791/63242 (2021).

View Video