Описан высокопроизводительный колориметрический анализ, измеряющий активность β-галактозидазы на трех стадиях жизненного цикла Trypanosoma cruzi, возбудителя болезни Шагаса. Этот анализ может быть использован для идентификации трипаноцидных соединений простым, быстрым и воспроизводимым способом.
Trypanosoma cruzi является возбудителем болезни Шагаса (ИБС), эндемического заболевания, имеющего значение для общественного здравоохранения в Латинской Америке, которое также поражает многие неэндемические страны из-за увеличения миграции. Это заболевание поражает почти 8 миллионов человек, причем новые случаи оцениваются в 50 000 в год. В 1960-х и 70-х годах были введены два препарата для лечения ИБС: нифуртимокс и бензнидазол (БЗН). Оба эффективны у новорожденных и во время острой фазы заболевания, но не в хронической фазе, и их использование связано с важными побочными эффектами. Эти факты подчеркивают настоятельную необходимость активизации поиска новых препаратов против T. cruzi.
T. cruzi передается через гематофаговых насекомых-переносчиков семейств Reduviidae и Hemiptera. Попав в хозяина млекопитающих, он размножается внутриклеточным образом как небигеллированная амастиготная форма и дифференцируется в трипомастигот, нерепликативную инфекционную форму кровотока. Внутри насекомого-переносчика трипомастиготы превращаются в стадию эпимастигота и размножаются посредством бинарного деления.
В данной работе описан анализ, основанный на измерении активности цитоплазматической β-галактозидазы, высвобождаемой в культуру вследствие лизиса паразитов с использованием субстрата хлорфенола красного β-D-галактопиранозида (CPRG). Для этого штамм T. cruzi Dm28c трансфектировался β-галактозидазой-сверхэкспрессирующей плазмидой и использовался для фармакологического скрининга in vitro на стадиях эпимастигота, трипомастигота и амастигота. В этой статье также описывается, как измерить ферментативную активность в культивируемых эпимастиготах, инфицированных клетках Vero амастиготами и трипомастиготах, высвобождаемых из культивируемых клеток, используя в качестве примера референтный препарат бензнидазол. Этот колориметрический анализ легко выполняется и может быть масштабирован до высокопроизводительного формата и применен к другим штаммам T. cruzi .
Болезнь Шагаса (ChD), или американский трипаносомоз, является паразитарным заболеванием, вызванным жгутиковым простейшим, Trypanosoma cruzi (T. cruzi). ИБС начинается с бессимптомной или олигосимптомной острой фазы, которая обычно не диагностируется, за которой следует пожизненная хроническая фаза. При хроничности ~ 30% пациентов проявляются через десятилетия после заражения различные изнурительные состояния, включая миокардиопатию, мега-пищеварительные синдромы или и то, и другое, с коэффициентом смертности от 0,2% до 20%1,2,3. Бессимптомные хронические пациенты могут не иметь клинических признаков, но оставаться серопозитивными на протяжении всей своей жизни.
Оценки показывают, что ~ 7 миллионов человек инфицированы во всем мире, в основном из Латинской Америки, где ИБС является эндемичным. В этих странах T. cruzi в основном передается через инфицированных кровососущих триатоминовых насекомых (трансмиссивная передача) и реже перорально через прием пищи, загрязненной триатоминовыми фекалиями, содержащими паразитов2. Кроме того, паразит может передаваться через плаценту от чагасических матерей новорожденным, через переливание крови или во время трансплантации органов. Эти независимые от переносчиков способы заражения инфекцией и миграции людей способствовали всемирному распространению болезни, о чем свидетельствует увеличение числа случаев заболевания в Северной Америке, Европе и некоторых странах Африки, Восточного Средиземноморья и Западной части Тихогоокеана4. ИБС считается забытой болезнью, поскольку трансмиссивная передача тесно связана с нищетой и является ведущей проблемой общественного здравоохранения, особенно в странах Латинской Америки с низким уровнем дохода. Несмотря на наличие доступных методов лечения, смертность от ИБС в Латинской Америке является самой высокой среди паразитарных заболеваний, включая малярию2.
Существует два зарегистрированных препарата для лечения ИБС, введенных в конце 1960-х и начале 1970-х годов: нифуртимокс и бензнидазол5. Оба препарата эффективны в острой фазе заболевания у взрослых, детей и врожденно инфицированных новорожденных, а также у детей с хронической инфекцией, где обычно достигается излечение. Тем не менее, только несколько человек диагностируются достаточно рано, чтобы вовремя лечиться. Согласно последним клиническим испытаниям, оба препарата имеют важные ограничения у взрослых и были неэффективны в уменьшении симптомов у людей с хроническими заболеваниями; следовательно, их использование на данном этапе является спорным. Другими недостатками являются длительные сроки лечения (60-90 дней) и наблюдаемые частые, тяжелые побочные эффекты, которые приводят к прекращению терапии у доли инфицированных людей 6,7. По оценкам, менее 10% людей с ИБС были диагностированы, и еще меньше людей имеют доступ к лечению, поскольку многие пострадавшие люди живут в сельских районах без или с ограниченным доступом к здравоохранению8. Эти факты подчеркивают настоятельную необходимость поиска новых лекарств против T. cruzi, чтобы обеспечить более эффективные, безопасные и применимые к полевым методам лечения, особенно для хронической фазы. В связи с этим еще одной проблемой в разработке более эффективных соединений является ограничение систем оценки эффективности препарата in vitro и in vivo9.
Хотя химическая биология и геномные подходы для идентификации потенциальных мишеней лекарств использовались у кинетопластидных паразитов, доступные геномные инструменты у T. cruzi ограничены в отличие от T. brucei или Leishmania. Таким образом, скрининг соединений с трипаноцидной активностью по-прежнему является наиболее используемым подходом в поиске новых химиотерапевтических препаратов-кандидатов против ИПК. Обычно открытие препарата у T. cruzi должно начинаться с тестирования эффектов нового препарата в анализе in vitro против стадии эпимастигота. В течение десятилетий единственным способом измерения ингибирующего воздействия соединений-кандидатов на T. cruzi был ручной микроскопический подсчет, который является трудоемким, трудоемким и зависящим от оператора. Кроме того, этот подход подходит для анализа небольшого количества соединений, но неприемлем для высокопроизводительного скрининга больших библиотек соединений. В настоящее время многие исследования начинаются с анализа огромного количества соединений различного происхождения, которые анализируются in vitro, проверяя их способность ингибировать рост паразитов. Как колориметрические, так и флуорометрические методы были разработаны для увеличения пропускной способности в этих анализах, повышения объективности скрининга и делая весь процесс менее утомительным9.
Один из наиболее широко используемых колориметрических методов основан на β-галактозидазной активности трансфекторазных паразитов, впервые описанной Бакнетом и соавторами10. Фермент β-галактозидазы, экспрессируемый рекомбинантными паразитами, гидролизует хромогенный субстрат, хлорфенол красный β-D-галактопиранозид (CPRG), до хлорфенол-красного, который можно легко измерить колориметрически с помощью микропластичного спектрофотометра. Таким образом, рост паразитов в присутствии различных соединений может быть одновременно оценен и количественно определен в микротитрных пластинах. Этот метод был применен для тестирования лекарств в формах эпимастигот (присутствующих в насекомом переносчике), трипомастиготах и внутриклеточных амастиготах, стадиях млекопитающих паразита. Кроме того, несколько рекомбинантных штаммов T. cruzi, трансфектированных плазмидой pBS:CL-Neo-01/BC-X-10 (pLacZ)10 для экспрессии фермента Escherichia coli β-галактозидазы, уже доступны (и могут быть построены новые), что позволяет оценивать паразитов из разных дискретных типографских единиц (DTU), которые могут не вести себя одинаково по отношению к одним и тем же соединениям 10,11,12,13 . Этот метод уже успешно использовался для оценки активности соединений в отношении T. cruzi при низко- и высокопроизводительном скрининге12,13. Аналогичные подходы также использовались у других простейших паразитов, включая Toxoplasma gondii и Leishmania mexicana14,15.
В этой статье описан и показан подробный метод скрининга препарата in vitro против всех стадий жизненного цикла T. cruzi с использованием паразитов, экспрессирующих β-галактозидазу. Представленные здесь анализы были выполнены с β-галактозидазой-экспрессирующей линией T. cruzi , полученной путем трансфекции штамма T. cruzi Dm28c из DTU I13 с плазмидой pLacZ (Dm28c/pLacZ). Кроме того, тот же протокол может быть легко адаптирован к другим штаммам для сравнения производительности между соединениями и между штаммами T. cruzi или DTU.
В данной работе описан анализ, основанный на определении активности цитоплазматической β-галактозидазы, высвобождаемой в результате мембранного лизиса T. cruzi epimastigotes, трипомастиготов или инфицированных клеток амастиготами в присутствии субстрата CPRG. Мы использовали паразитов T…
The authors have nothing to disclose.
Мы благодарим доктора Бакнера за любезное предоставление плазмиды pLacZ. Эта работа была поддержана Agencia Nacional de Promoción Científica y Tecnológica, Ministerio de Ciencia e Innovación Productiva из Аргентины (PICT2016-0439, PICT2019-0526, PICT2019-4212) и Исследовательским советом Соединенного Королевства [MR/P027989/1]. Медицинское искусство Сервье было использовано для создания рисунка 1 (https://smart.servier.com).
1 L beaker | Schott Duran | 10005227 | |
10 mL serological pipette sterile | Jet Biofil | GSP211010 | |
5 mL serological pipette sterile | Jet Biofil | GSP010005 | |
96-well plates | Corning | 3599 | |
Benznidazole | Sigma Aldrich | 419656 | N-Benzyl-2-nitro-1H-imidazole-1-acetamide |
Biosafty Cabinet | Telstar | Bio II A/P | |
Centrifuge tube 15 mL conical bottom sterile | Tarson | 546021 | |
Centrifuge tube 50 mL conical bottom sterile | Tarson | 546041 | |
CO2 Incubator | Sanyo | MCO-15A | |
CPRG | Roche | 10 884308001 | Chlorophenol Red-β-D-galactopyranoside |
DMEM, High Glucose | Thermo Fisher Cientific | 12100046 | Powder |
DMSO | Sintorgan | SIN-061 | Dimethylsulfoxid |
Fetal Calf Serum | Internegocios SA | FCS FRA 500 | Sterile and heat-inactivated |
G418 disulphate salt solution | Roche | G418-RO | stock concentration: 50 mg/mL |
Glucose D(+) | Cicarelli | 716214 | |
Graduated cylinder | Nalgene | 3663-1000 | |
Hemin | Frontier Scientific | H651-9 | |
KCl | Cicarelli | 867212 | |
Liver Infusion | Difco | 226920 | |
Microcentrifuge tube 1.5 mL | Tarson | 500010-N | |
Microplate Spectrophotometer | Biotek | Synergy HTX | |
Na2HPO4 | Cicarelli | 834214 | |
NaCl | Cicarelli | 750214 | |
Neubauer chamber | Boeco | BOE 01 | |
Nonidet P-40 | Antrace | NIDP40 | 2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethanol |
Prism | Graphpad | Statistical Analysis software | |
Sodium Bicarbonate | Cicarelli | 929211 | NaHCO3 |
Sorvall ST 16 Centrifuge | Thermo Fisher Cientific | 75004380 | |
T-25 flasks | Corning | 430639 | |
Tryptose | Merck | 1106760500 | |
Vero cells | ATCC | CRL-1587 |