概要

产生来自多能干细胞的自组装人心脏类器官

Published: September 15, 2021
doi:

概要

在这里,我们描述了一种方案,通过自组织有效地使用人类多能干细胞来创建与发育相关的人类心脏类器官(hHO)。该协议依赖于发育线索的顺序激活,并产生高度复杂,功能相关的人体心脏组织。

Abstract

研究人类心脏在健康和疾病中发育的能力受到 在体外模拟人类心脏复杂性的能力的高度限制。开发更有效的器官样平台,可以模拟复杂的 体内 表型,如类器官和器官芯片,将增强研究人类心脏发育和疾病的能力。本文描述了一种方案,通过使用人类多能干细胞的自组织和使用小分子抑制剂逐步激活发育途径来产生高度复杂的人心脏类器官(hHO)。胚胎体(EB)在具有圆底,超低附着孔的96孔板中产生,促进个体化结构的悬浮培养。

EB通过三步Wnt信号调节策略分化为hHO,该策略涉及初始Wnt通路激活以诱导心脏中胚层命运,第二步Wnt抑制以创建确定的心脏谱系,以及第三个Wnt激活步骤以诱导心前器官组织。这些步骤以96孔的形式进行,效率高,可重复,每次运行产生大量类器官。通过免疫荧光成像从第3天到第11天的分化分析揭示了第15天hHO内的第一和第二心场规格和高度复杂的组织,包括具有心房和心室心肌细胞区域的心肌组织,以及衬有心内膜组织的内腔。类器官还在整个结构和心外膜组织的外衬里中表现出复杂的血管网络。从功能的角度来看,hHO具有强大的水平,并表现出由Flu-4活体成像确定的正常钙活性。总体而言,该协议构成了人体器官样心脏组织 体外 研究的坚实平台。

Introduction

先天性心脏缺陷(CHDs)是人类最常见的先天性缺陷类型,影响约1%的活产123。在大多数情况下,冠心病的原因仍然未知。在实验室中创建与发育中的人类心脏非常相似的人类心脏模型的能力是直接研究人类而不是代孕动物模型中CHDs的根本原因的重要一步。

实验室培养的组织模型的缩影是类器官,类似于细胞组成和生理功能中感兴趣的器官的3D细胞结构。类器官通常来自干细胞或祖细胞,并已成功用于模拟许多器官,如脑45,肾67,肠89,肺1011,肝脏1213和胰腺1415,仅举几例。最近的研究表明,创造自组装心脏类器官在体外研究心脏发育是可行的。这些模型包括使用小鼠胚胎干细胞(mESCs)对早期心脏发育进行建模1617直至房室规格18,并使用人类多能干细胞(hPSCs)来生成具有高度复杂细胞组成的多生殖层心内胚类器官19和腔室心形体20

本文提出了一种新颖的3步WNT调制方案,以高效且具有成本效益的方式生成高度复杂的hHO。类器官在96孔板中生成,从而形成一个可扩展的高通量系统,可以轻松自动化。该方法依赖于创建hPSC聚集体并触发心脏发生的发育步骤,包括中胚层和心脏中胚层形成,第一和第二心场规范,心前器官形成和房室规范。分化15天后,hHO包含心脏中发现的所有主要细胞谱系,明确定义的内腔,心房和心室腔以及整个类器官的血管网络。这种高度复杂且可重复的心脏类器官系统适合在心脏发育,疾病和药理学筛查研究中研究结构,功能,分子和转录组学分析。

Protocol

1. hPSC培养与维护 注意:人诱导的PSCs(hiPSCs)或人胚胎干细胞(hESCs)在解冻后需要培养至少连续传代2次,然后才能用于产生EB进行分化或进一步冷冻保存。hPSCs在PSC培养基(见 材料表)中基底膜 – 细胞外基质(BM-ECM)包被的6孔培养板上培养。当在6孔板中的hPSCs上进行培养基更换时,将培养基直接添加到孔的内侧,而不是直接在细胞顶部,以防止不必要的细胞脱离…

Representative Results

为了在体外实现自组织hHO,我们使用Wnt通路调节剂修改和组合了先前描述的心肌细胞21和心外膜细胞22的2D单层分化方案,以及使用生长因子BMP4和Activin A的3D心前类器官16。,优化了Wnt途径激活剂CHIR99021的浓度和暴露持续时间,以产生来自人类PSC的高度可重复性和复杂的hHO.hPSCs或hESCs在PSC培养基中培养至60-80%的融合在…

Discussion

人类干细胞衍生的心肌细胞和其他心脏来源的细胞的最新进展已被用于模拟人类心脏发育222425 和疾病262728 ,并作为筛选治疗药物的工具2930 和有毒物质3132</sup…

開示

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国立卫生研究院国家心脏,肺和血液研究所的支持,奖项编号为K01HL135464和R01HL151505,美国心脏协会的奖项编号为19IPLOI34660342。我们要感谢MSU高级显微镜核心和密歇根州立大学药理学和毒理学系的William Jackson博士获得共聚焦显微镜,IQ显微镜核心和密歇根州立大学基因组学核心的测序服务。我们还要感谢阿吉雷实验室的所有成员的宝贵意见和建议。

Materials

Antibodies
Alexa Fluor 488 Donkey anti- mouse Invitrogen A-21202 1:200
Alexa Fluor 488 Donkey anti- rabbit Invitrogen A-21206 1:200
Alexa Fluor 594 Donkey anti- mouse Invitrogen A-21203 1:200
Alexa Fluor 594 Donkey anti- rabbit Invitrogen A-21207 1:200
Alexa Fluor 647 Donkey anti- goat Invitrogen A32849 1:200
HAND1 Abcam ab196622 Rabbit; 1:200
HAND2 Abcam ab200040 Rabbit; 1:200
NFAT2 Abcam ab25916 Rabbit; 1:100
PECAM1 DSHB P2B1 Rabbit; 1:50
TNNT2 Abcam ab8295 Mouse; 1:200
THY1 Abcam ab133350 Rabbit; 1:200
TJP1 Invitrogen PA5-19090 Goat; 1:250
VIM Abcam ab11256 Goat; 1:250
WT1 Abcam ab89901 Rabbit; 1:200
Media and Reagents
Accutase Innovative Cell Technologies NC9464543 cell dissociation reagent
Activin A R&D Systems 338AC010
B-27 Supplement (Minus Insulin) Gibco A1895601 insulin-free cell culture supplement
B-27 Supplement Gibco 17504-044 cell culture supplement
BMP-4 Gibco PHC9534
Bovine Serum Albumin Bioworld 50253966
CHIR-99021 Selleck 442310
D-(-)-Fructose Millipore Sigma F0127
DAPI Thermo Scientific 62248 1:1000
Dimethyl Sulfoxide Millipore Sigma D2650
DMEM/F12 Gibco 10566016
Essential 8 Flex Medium Kit Gibco A2858501 pluripotent stem cell (PSC) medium containing 1% penicillin-streptomycin
Fluo4-AM Invitrogen F14201
Glycerol Millipore Sigma G5516
Glycine Millipore Sigma 410225
Matrigel GFR Corning CB40230 Basement membrane extracellular matrix (BM-ECM)
Normal Donkey Serum Millipore Sigma S30-100mL
Paraformaldehyde MP Biomedicals IC15014601 Powder dissolved in PBS Buffer – use at 4%
Penicillin-Streptomycin Gibco 15140122
Phosphate Buffer Solution Gibco 10010049
Phosphate Buffer Solution (10x) Gibco 70011044
Polybead Microspheres Polysciences, Inc. 73155 90 µm
ReLeSR Stem Cell Technologies NC0729236 dissociation reagent for hPSCs
RPMI 1640 Gibco 11875093
Thiazovivin Millipore Sigma SML1045
Triton X-100 Millipore Sigma T8787
Trypan Blue Solution Gibco 1525006
VECTASHIELD Vibrance Antifade Mounting Medium Vector Laboratories H170010
WNT-C59 Selleck NC0710557
その他
1.5 mL Microcentrifuge Tubes Fisher Scientific 02682002
15 mL Falcon Tubes Fisher Scientific 1495970C
2 mL Cryogenic Vials Corning 13-700-500
50 mL Reagent Reservoirs Fisherbrand 13681502
6-Well Flat Bottom Cell Culture Plates Corning 0720083
8 Well chambered cover Glass with #1.5 high performance cover glass Cellvis C8-1.5H-N
96-well Clear Ultra Low Attachment Microplates Costar 07201680
ImageJ NIH Image processing software
Kimwipes Kimberly-Clark Professional 06-666 laboratory wipes
Micro Cover Glass VWR 48393-241 24 x 50 mm No. 1.5
Microscope Slides Fisherbrand 1255015
Moxi Cell Counter Orflo Technologies  MXZ001
Moxi Z Cell Count Cassette – Type M Orflo Technologies MXC001
Multichannel Pipettes Fisherbrand FBE1200300 30-300 µL
Olympus cellVivo Olympus For Caclium Imaging, analysis with Imagej
Sorvall Legend X1 Centrifuge ThermoFisher Scientific 75004261
Thermoshaker ThermoFisher Scientific 13-687-711PM
Top Coat Nail Varish Seche Vite Can purchase from any supermarket

参考文献

  1. Hoffman, J. I. E., Kaplan, S. The incidence of congenital heart disease. Journal of the American College of Cardiology. 39 (12), 1890-1900 (2002).
  2. Wu, W., He, J., Shao, X. Incidence and mortality trend of congenital heart disease at the global, regional, and national level, 1990-2017. 医学. 99 (23), 20593 (2020).
  3. Fahed, A. C., Gelb, B. D., Seidman, J. G., Seidman, C. E. Genetics of congenital heart disease: the glass half empty. Circulation Research. 112 (4), 707-720 (2013).
  4. Lancaster, M. A., et al. Cerebral organoids model human brain development and microcephaly. Nature. 501 (7467), 373-379 (2013).
  5. Mansour, A. A., et al. An in vivo model of functional and vascularized human brain organoids. Nature Biotechnology. 36, 432-441 (2018).
  6. Homan, K. A., et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nature Methods. 16 (3), 255-262 (2019).
  7. Uchimura, K., Wu, H., Yoshimura, Y., Humphreys, B. D. Human pluripotent stem cell-derived kidney organoids with improved collecting duct maturation and injury modeling. Cell Reports. 33 (11), 108514 (2020).
  8. Serra, D., et al. Self-organization and symmetry breaking in intestinal organoid development. Nature. 569, 66-72 (2019).
  9. Mithal, A., et al. Generation of mesenchyme free intestinal organoids from human induced pluripotent stem cells. Nature Communications. 11, 215 (2020).
  10. Porotto, M., et al. Authentic modeling of human respiratory virus infection in human pluripotent stem cell-derived lung organoids. mBio. 10 (3), 00723 (2019).
  11. Dye, B. R., et al. In vitro generation of human pluripotent stem cell derived lung organoids. Elife. 4, 05098 (2015).
  12. Mun, S. J., et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. Journal of Hepatology. 71 (5), 970-985 (2019).
  13. Vyas, D., et al. Self-assembled liver organoids recapitulate hepatobiliary organogenesis in vitro. Hepatology. 67 (2), 750-761 (2018).
  14. Dossena, M., et al. Standardized GMP-compliant scalable production of human pancreas organoids. Stem Cell Research & Therapy. 11, 94 (2020).
  15. Georgakopoulos, N., et al. Long-term expansion, genomic stability and in vivo safety of adult human pancreas organoids. BMC Developmental Biology. 20 (1), 4 (2020).
  16. Andersen, P., et al. Precardiac organoids form two heart fields via Bmp/Wnt signaling. Nature Communications. 9, 3140 (2018).
  17. Rossi, G., et al. Capturing cardiogenesis in gastruloids. Cell Stem Cell. 28 (2), 230-240 (2021).
  18. Lee, J., et al. In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nature Communications. 11 (1), 4283 (2020).
  19. Drakhlis, L., et al. Human heart-forming organoids recapitulate early heart and foregut development. Nature Biotechnology. 39 (6), 737-746 (2021).
  20. Hofbauer, P., et al. Cardioids reveal self-organizing principles of human cardiogenesis. Cell. 184 (12), 3299-3317 (2021).
  21. Bao, X., et al. Directed differentiation and long-term maintenance of epicardial cells derived from human pluripotent stem cells under fully defined conditions. Nature Protocols. 12 (9), 1890-1900 (2017).
  22. Bao, X., et al. Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions. Nature Biomedical Engineering. 1, 0003 (2016).
  23. Lewis-Israeli, Y., et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nature Communications. 12, 5142 (2021).
  24. Lian, X., et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America. 109 (27), 1848-1857 (2012).
  25. Burridge, P. W., Keller, G., Gold, J. D., Wu, J. C. Production of de novo cardiomyocytes: Human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 10 (1), 16-28 (2012).
  26. Hashem, S. I., et al. Impaired mitophagy facilitates mitochondrial damage in Danon disease. Journal of Molecular and Cellular Cardiology. 108, 86-94 (2017).
  27. Sun, N., et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Science Translational Medicine. 4 (130), (2012).
  28. Stroud, M. J., et al. Luma is not essential for murine cardiac development and function. Cardiovascular Research. 114 (3), 378-388 (2018).
  29. Liang, P., et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation. 127 (16), 1677-1691 (2013).
  30. Mills, R. J., et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proceedings of the National Academy of Sciences of the United States of America. 114 (40), 8372-8381 (2017).
  31. Braam, S. R., et al. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Research. 4 (2), 107-116 (2010).
  32. Burridge, P. W., et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nature Medicine. 22 (5), 547-556 (2016).
  33. Pinto, A. R., et al. Revisiting cardiac cellular composition. Circulation Research. 118 (3), 400-409 (2017).
  34. Bertero, A., et al. Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nature Communications. 10 (1), 1538 (2019).
  35. Gilbert, S. F. Lateral plate mesoderm: Heart and Circulatory System. Developmental Biology. 6th edition. , 591-610 (2000).
  36. Richards, D. J., et al. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nature Biomedical Engineering. 4 (4), 446-462 (2020).
  37. Lewis-Israeli, Y. R., Wasserman, A. H. Heart Organoids and Engineered Heart Tissues: Novel Tools for Modeling Human Cardiac Biology and Disease. Biomolecules. 1277, (2021).

Play Video

記事を引用
Lewis-Israeli, Y. R., Volmert, B. D., Gabalski, M. A., Huang, A. R., Aguirre, A. Generating Self-Assembling Human Heart Organoids Derived from Pluripotent Stem Cells. J. Vis. Exp. (175), e63097, doi:10.3791/63097 (2021).

View Video