概要

В городе Виво Беспроводной оптогенетический контроль квалифицированного двигательного поведения

Published: November 22, 2021
doi:

概要

Настоящий протокол описывает, как использовать беспроводную оптогенетику в сочетании с высокоскоростной видеографией в одной задаче захвата гранул для характеристики нейронных цепей, участвующих в выполнении квалифицированного двигательного поведения у свободно движущихся мышей.

Abstract

Мелкая моторика необходима в повседневной жизни и может быть скомпрометирована при нескольких расстройствах нервной системы. Приобретение и выполнение этих задач требует сенсорно-моторной интеграции и включает в себя точное управление двусторонними мозговыми цепями. Реализация одноручных поведенческих парадигм в животных моделях улучшит понимание вклада структур мозга, таких как полосатое тело, в сложное двигательное поведение, поскольку это позволяет манипулировать и регистрировать нейронную активность конкретных ядер в контрольных условиях и заболеваниях во время выполнения задачи.

С момента своего создания оптогенетика была доминирующим инструментом для опроса мозга, позволяя селективную и целенаправленную активацию или ингибирование нейронных популяций. Сочетание оптогенетики с поведенческими анализами проливает свет на основные механизмы конкретных функций мозга. Беспроводные головные системы с миниатюрными светодиодами (СВЕТОДИОДАМИ) позволяют осуществлять дистанционное оптогенетическое управление у полностью свободно движущегося животного. Это позволяет избежать ограничений проводной системы, которая является менее ограничительной для поведения животных без ущерба для эффективности светового излучения. Текущий протокол сочетает в себе подход беспроводной оптогенетики с высокоскоростной видеографией в универсальной задаче ловкости для анализа вклада конкретных нейронных популяций в мелкомоторное поведение.

Introduction

Двигательное поведение присутствует во время большинства движений, выполняемых нами, и, как известно, оно затрагивается при нескольких расстройствах головного мозга 1,2,3,4,5,6. Выполнение задач, позволяющих изучать развитие, обучение и выполнение квалифицированных движений, имеет решающее значение для понимания нейробиологических основ двигательной функции, особенно в моделях черепно-мозговой травмы, нейродегенеративных расстройств и нарушений нервно-психического развития 2,7,8,9,10,11,12,13 . Дотягивание и извлечение предметов осуществляется регулярно в повседневных действиях, и это один из первых двигательных навыков, приобретенных во время раннего развития, а затем усовершенствованных в течение 5,6 лет. Он включает в себя сложное поведение, которое требует сенсорно-моторных процессов, таких как восприятие особенностей объекта, планирование движения, выбор действий, выполнение движения, координация тела и модуляция скорости 7,14,15,16. Таким образом, онирукие задания на высокую ловкость требуют участия многих структур мозга обоих полушарий 16,17,18,19,20,21,22. У мышей задача до захвата одной гранулы характеризуется для нескольких фаз, которые можно контролировать и анализировать отдельно 7,13,23. Данная особенность позволяет изучать вклад специфических нейрональных субпопуляций на разных этапах приобретения и выполнения поведения и предоставляет платформу для детального изучениядвигательных систем 13,23,24. Движение происходит за пару секунд; таким образом, высокоскоростная видеография должна использоваться для кинематического анализа на отдельных этапах траектории квалифицированного двигателя 7,25. Из видео можно извлечь несколько параметров, включая положение тела, траекторию, скорость и тип ошибок25. Кинематический анализ может быть использован для обнаружения тонких изменений во время беспроводных оптогенетических манипуляций 7,23.

Использование миниатюрных светодиодов (СВЕТОДИОДОВ) для доставки света через беспроводную систему, установленную на голове, позволяет иметь дистанционное оптогенетическое управление, пока животное выполняет задачу. Беспроводной оптогенетический контроллер принимает одноимпульсные или непрерывные триггерные команды от стимулятора и отправляет инфракрасные (ИК) сигналы на приемник, подключенный к миниатюрному светодиоду23,26. Текущий протокол сочетает в себе этот беспроводной оптогенетический подход с высокоскоростной видеографией задачи ловкости для препарирования роли конкретных нейронных популяций во время выполнения мелкомоторного поведения23. Поскольку это однорукая задача, она позволяет оценить участие структур в обоих полушариях. Традиционно мозг контролирует движение тела очень асимметричным образом; однако задачи с высокой ловкостью требуют тщательной координации и контроля со стороны многих структур мозга, включая ипсилатеральные ядра и дифференциальный вклад нейронных субпопуляций вядрах 10,20,21,22,23. Этот протокол показывает, что подкорковые структуры из обоих полушарий контролируют траекторию передней конечности23. Эта парадигма может быть подходящей для изучения других областей мозга и моделей заболеваний мозга.

Protocol

Процедуры, связанные с использованием животных, были проведены в соответствии с местными и национальными руководящими принципами и одобрены соответствующим Институциональным комитетом по уходу за животными и их использованию (протокол Института клеточной физиологии IACUC VLH151-19). В тек?…

Representative Results

Задача «достичь понимания» — это парадигма, широко используемая для изучения формирования, обучения, производительности и кинематики движения тонких навыков при различных экспериментальных манипуляциях. Мыши учатся выполнять задание за пару дней и достигают более 55% точности, дости?…

Discussion

Использование оптогенетических манипуляций с нейронными популяциями в четко определенных поведенческих парадигмах расширяет наши знания о механизмах, лежащих в основе двигательного контроля 7,23. Беспроводные методы особенно подходят для задач, требую…

開示

The authors have nothing to disclose.

Acknowledgements

Эта работа была поддержана проектом УНАМ-ПАПИИТ IA203520. Мы благодарим центр для животных IFC за помощь в обслуживании колоний мышей и вычислительный блок для ИТ-поддержки, особенно Франсиско Перес-Эухенио.

Materials

Anaesthesia machine RWD R583S Isoflurane vaporizer
Anesket PiSA Ketamine
Breadboard Thorlabs MB3090/M Solid aluminum optical breadboard
Camera lense Canon 50mmf/ 1.4 manual focus lenses (c-mount)
Camera system BrainVision MiCAM02 Camera controller and synchronizer
Cotton swabs
CS solution PiSA Sodium chloride solution 9%
Customized training chamber In house
Drill bit #105 Dremel 2 615 010 5AE Engraving cutter
Dustless precission chocolate pellets Bio-Serv F05301
Ethyl Alcohol J.T.  Baker 9000-02 Ethanol
Eyespears Ultracell 40400-8 Eyespears of absorbent PVA material
Fluriso VetOne V1 502017-250 Isoflurane
Glass capillaries Drumond Scientific 3-000-203-G/X Pipettes for NanoJect II
Hidrogen peroxide Farmacom Antiseptic
High-speed camera BrainVision MiCAM02-CMOS Monochrome high-speed cameras
Infrared emmiter Teleopto
Insulin syringe
LED cannula Teleopto TelC-c-l-d LED cannula 250um 487nm light
Micropipette 10 uL Eppendorf Z740436
Micro-pipette puller Sutter P-87 Horizontal puller
Microscope LSM780 Zeiss Confocal microscope
Microtome
Mock receiver Teleopto
NanoJect II Drumond Scientific 3-000-204 Micro injector
Oxygen tank Infra na
pAAV-EF1a-double.floxed-hChR2(H134R)-mCherry-WPRE- HGHpA Addgene 20297 Viral vector for ChR-2 expression
Parafilm
Paraformaldehyde Sigma P-6148
Phosphate saline buffer Sigma P-4417 Phosphate saline buffer tablets
Pipette tips 10 uL ThermoFisher AM12635 0.5-10 uL  volume
Pisabental PiSA Sodium pentobarbital
Plexiglass commercial Acrylic sheet
Povidone iodine Farmacom Antiseptic
Procin PiSA Xylacine
Puralube Perrigo pharma 1228112 Eye lubricant 15% mineral oil/85% petrolatum
Rotary tool Kmoon Mini grinder Standard
Scalpel
Scalpel blade
Stereotaxic apparatus Stoelting 51730D Digital apparatus
Super-Bond C&B Sun Medical Dental cement
Surgical dispossable cap
Teleopto remote controller Teleopto
Tg Drd1-Cre mouse line Gensat 036916-UCD Transgene insertion FK150Gsat
Tissue adhesive 3M Vetbond 1469SB
TPI Vibratome 1000 plus Peico Microtome
Vectashield mounting media with DAPI Vector laboratories H-1200 Mounting media
Wireless receiver Teleopto TELER-1-P

参考文献

  1. Balbinot, G., et al. Post-stroke kinematic analysis in rats reveals similar reaching abnormalities as humans. Scientific Report. 8 (1), 8738 (2018).
  2. Klein, A., Sacrey, L. A., Whishaw, I. Q., Dunnett, S. B. The use of rodent skilled reaching as a translational model for investigating brain damage and disease. Neuroscience & Biobehavioral Reviews. 36 (3), 1030-1042 (2012).
  3. MacLellan, C. L., Gyawali, S., Colbourne, F. Skilled reaching impairments follow intrastriatal hemorrhagic stroke in rats. Behavioural Brain Research. 175 (1), 82-89 (2006).
  4. Evenden, J. L., Robbins, T. W. Effects of unilateral 6-hydroxydopamine lesions of the caudate-putamen on skilled forepaw use in the rat. Behavioural Brain Research. 14 (1), 61-68 (1984).
  5. Rodgers, R. A., Travers, B. G., Mason, A. H. Bimanual reach to grasp movements in youth with and without autism spectrum disorder. Frontiers in Psychology. 9, 2720 (2019).
  6. Sacrey, L. A. -. O., Zwaigenbaum, L., Bryson, S., Brian, J., Smith, I. M. The reach-to-grasp movement in infants later diagnosed with autism spectrum disorder: a high-risk sibling cohort study. Journal of Neurodevelopmental Disorders. 10 (1), 41 (2018).
  7. Azim, E., Jiang, J., Alstermark, B., Jessell, T. M. Skilled reaching relies on a V2a propriospinal internal copy circuit. Nature. 508 (7496), 357-363 (2014).
  8. Marques, J. M., Olsson, I. A. Performance of juvenile mice in a reach-to-grasp task. Journal of Neuroscience Methods. 193 (1), 82-85 (2010).
  9. Miklyaeva, E. I., Castaneda, E., Whishaw, I. Q. Skilled reaching deficits in unilateral dopamine-depleted rats: Impairments in movement and posture and compensatory adjustments. The Journal of Neuroscience. 14 (11), 7148-7158 (1994).
  10. Vaidya, M., Kording, K., Saleh, M., Takahashi, K., Hatsopoulos, N. G. Neural coordination during reach-to-grasp. Journal of Neurophysiology. 114 (3), 1827-1836 (2015).
  11. Wang, X., et al. Deconstruction of corticospinal circuits for goal-directed motor skills. Cell. 171 (2), 440-455 (2017).
  12. Xu, T., et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature. 462 (7275), 915-919 (2009).
  13. Ian, Q. W., Sergio, M. P. The structure of skilled forelimb reaching in the rat: A proximally driven movement with a single distal rotatory component. Behavioural Brain Research. 41 (1), 49-59 (1990).
  14. Proske, U., Gandevia, S. C. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiological Reviews. 92 (4), 1651-1697 (2012).
  15. Yttri, E. A., Dudman, J. T. Opponent and bidirectional control of movement velocity in the basal ganglia. Nature. 533 (7603), 402-406 (2016).
  16. Donchin, O., Gribova, A., Steinberg, O., Bergman, H., Vaadia, E. Primary motor cortex is involved in bimanual coordination. Nature. 395 (6699), 274-278 (1998).
  17. Brus-Ramer, M., Carmel, J. B., Martin, J. H. Motor cortex bilateral motor representation depends on subcortical and interhemispheric interactions. The Journal of Neuroscience. 29 (19), 6196-6206 (2009).
  18. d’Avella, A., Saltiel, P., Bizzi, E. Combinations of muscle synergies in the construction of a natural motor behavior. Nature Neuroscience. 6 (3), 300-308 (2003).
  19. Fattori, P., et al. Hand orientation during reach-to-grasp movements modulates neuronal activity in the medial posterior parietal area V6A. The Journal of Neuroscience. 29 (6), 1928-1936 (2009).
  20. vanden Berg, F. E., Swinnen, S. P., Wenderoth, N. Excitability of the motor cortex ipsilateral to the moving body side depends on spatio-temporal task complexity and hemispheric specialization. PLoS One. 6 (3), 17742 (2011).
  21. vanden Berg, F. E., Swinnen, S. P., Wenderoth, N. Involvement of the primary motor cortex in controlling movements executed with the ipsilateral hand differs between left- and right-handers. Journal of Cognitive Neuroscience. 23 (11), 3456-3469 (2011).
  22. Verstynen, T., Diedrichsen, J., Albert, N., Aparicio, P., Ivry, R. B. Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity. Journal of Neurophysiology. 93 (3), 1209-1222 (2005).
  23. Lopez-Huerta, V. G., et al. Striatal bilateral control of skilled forelimb movement. Cell Reports. 34 (3), 108651 (2021).
  24. Lopez-Huerta, V. G., et al. The neostriatum: two entities, one structure. Brain Structure and Function. 221 (3), 1737-1749 (2016).
  25. Becker, M. I., Calame, D. J., Wrobel, J., Person, A. L. Online control of reach accuracy in mice. Journal of Neurophysiology. 124 (6), 1637-1655 (2020).
  26. Jaidar, O., et al. Synchronized activation of striatal direct and indirect pathways underlies the behavior in unilateral dopamine-depleted mice. European Journal of Neuroscience. 49 (11), 1512-1528 (2019).
  27. Gong, S., et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. The Journal of Neuroscience. 27 (37), 9817-9823 (2007).
  28. Rowland, N. E. Food or fluid restriction in common laboratory animals: balancing welfare considerations with scientific inquiry. Comparative Medicine. 57 (2), 149-160 (2007).
  29. Ullman-Culleré, M. H., Foltz, C. J. Body condition scoring: a rapid and accurate method for assessing health status in mice. Laboratory Animal Science. 49 (3), 319-323 (1999).
  30. Chen, C. C., Gilmore, A., Zuo, Y. Study motor skill learning by single-pellet reaching tasks in mice. Journal of Visualized Experiments. (85), e51238 (2014).
  31. Fink, A. J., et al. Presynaptic inhibition of spinal sensory feedback ensures smooth movement. Nature. 509 (7498), 43-48 (2014).
  32. Li, Q., et al. Refinement of learned skilled movement representation in motor cortex deep output layer. Nature Communication. 8, 15834 (2017).
  33. Overduin, S. A., d’Avella, A., Carmena, J. M., Bizzi, E. Microstimulation activates a handful of muscle synergies. Neuron. 76 (6), 1071-1077 (2012).
  34. Miyazaki, T., et al. Large Timescale interrogation of neuronal function by fiberless optogenetics using lanthanide micro-particles. Cell Reports. 26 (4), 1033-1043 (2019).
  35. Yang, Y., et al. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nature Neuroscience. 24 (7), 1035-1045 (2021).
  36. Kampasi, K., et al. Fiberless multicolor neural optoelectrode for in vivo circuit analysis. Scientific Reports. 6, 30961 (2016).
  37. Allen, B. D., Singer, A. C., Boyden, E. S. Principles of designing interpretable optogenetic behavior experiments. Learning & Memory. 22 (4), 232-238 (2015).
  38. Packer, A. M., et al. . Nature Methods. 9, 1202-1205 (2012).

Play Video

記事を引用
Rodriguez-Munoz, D. L., Jaidar, O., Palomero-Rivero, M., Arias-Garcia, M. A., Arbuthnott, G. W., Lopez-Huerta, V. G. In Vivo Wireless Optogenetic Control of Skilled Motor Behavior. J. Vis. Exp. (177), e63082, doi:10.3791/63082 (2021).

View Video