概要

使用埃及伊蚊的高分辨率熔融分析进行CRISPR/Cas9诱变后的Indel检测

Published: September 10, 2021
doi:

概要

本文详细介绍了快速鉴定CRISPR / Cas9诱导的内嵌的方案,以及使用高分辨率熔体分析选择蚊子 埃及伊蚊 中的突变系。

Abstract

随着转录激活子样效应核酸酶(TALENs)、锌指核酸酶(ZFNs)和归巢内切酶(HEEs)等系统的建立,蚊子基因编辑已成为几个实验室的常规。最近,簇状规则间隔的短回文重复序列(CRISPR)/CRISPR相关蛋白9(Cas9)技术为精密基因组工程提供了一种更简单,更便宜的替代方案。在核酸酶作用之后,DNA修复途径将修复断裂的DNA末端,通常会引入插入。然后,这些框架外突变用于理解靶生物体中的基因功能。然而,一个缺点是突变个体没有显性标记,这使得突变等位基因的鉴定和跟踪具有挑战性,特别是在许多实验所需的尺度上。

高分辨率熔体分析(HRMA)是鉴定核酸序列变异的简单方法,并利用PCR熔融曲线来检测此类变异。这种后PCR分析方法使用荧光双链DNA结合染料,其仪器具有温度斜坡控制数据捕获功能,并且易于缩放为96孔板格式。这里描述的是一个简单的工作流程,使用HRMA快速检测CRISPR / Cas9诱导的indels并在蚊子 Ae.埃及伊蚊中建立突变系。至关重要的是,所有步骤都可以用少量的腿部组织进行,并且不需要牺牲生物体,从而允许在基因分型后进行遗传杂交或表型测定。

Introduction

作为登革热1、寨卡2和基孔肯雅热3 等病原体的载体,以及疟疾寄生虫4,蚊子对人类构成重大的公共卫生威胁。对于所有这些疾病,传播干预的重点是控制蚊媒。研究在病原体的允许性,蚊子适应性,存活率,繁殖和对杀虫剂的抵抗力等方面的重要基因是制定新的蚊子控制策略的关键。出于这些目的,蚊子的基因组编辑正在成为一种普遍的做法,特别是随着诸如HE,ZFN,TALENs以及最近带有Cas9的CRISPR等技术的发展。基因编辑菌株的建立通常涉及携带所需突变的个体在几代人内回交,以尽量减少脱靶和创始人(瓶颈)效应,然后交叉杂合子个体以产生纯合子或跨杂合子系。在没有显性标记的情况下,分子基因分型在这个过程中是必要的,因为在许多情况下,不能检测到杂合突变体的明确表型性状。

虽然测序是基因型表征的黄金标准,但在数百或数千个个体中进行测序会产生获得结果所需的大量成本,劳动力和时间,这对于蚊子等寿命较短的生物体尤其重要。常用的替代方法包括 Surveyor 核酸酶测定法5 (SNA)、T7E1 测定法6 和高分辨率熔融分析(HRMA,已于 7 中回顾)。SNA和T7E1都使用切除不匹配碱基的内切酶。当杂合突变基因组的突变区域被扩增时,来自突变体和野生型等位基因的DNA片段被退火以产生不匹配的双链DNA(dsDNA)。SNA通过酶切特异性内切酶和简单的琼脂糖凝胶电泳检测是否存在错配。或者,HRMA使用由dsDNA结合荧光染料检测的dsDNA的热力学特性,染料的解离温度根据突变的存在和类型而变化。HRMA已被用于检测单核苷酸多态性(SNPs)8,斑马鱼的突变基因分型9,微生物应用10和植物遗传研究11等。

本文介绍了HRMA,这是一种由CRISPR/ Cas9技术产生的突变蚊子进行分子基因分型的简单方法。与替代技术相比,HRMA的优势包括1)灵活性,因为它已被证明对各种基因有用,广泛的凹槽大小,以及不同凹槽大小与杂合子,纯合子和跨杂合子分化之间的区别121314,2)成本,因为它基于常用的PCR试剂,以及3)节省时间, 因为它可以在短短几个小时内完成。此外,该协议使用一个小的身体部位(腿)作为DNA的来源,允许蚊子在基因分型过程中存活下来,允许建立和维持突变系。

Protocol

1. 单核苷酸多态性(SNP)、HRMA引物设计和引物验证 野生型实验室群落蚊子的SNP鉴定选择目标外显子以破坏适当的多肽翻译。注意:靶标应靠近起始密码子或蛋白质功能所需的关键残基。外显子越短(例如,≤200碱基),靶向和分析就越困难。避免在靠近外显子边界的地方进行编辑,因为这会迫使其中一个HRMA引物穿过内含子或进入内含子。这是不可取的,因为这些地区的SNP率往往…

Representative Results

使用CRISPR / Cas9技术获得含有 AaeZIP11 (推定的铁转运蛋白21)和 myo-fem (与飞行肌肉相关的女性偏倚肌球蛋白基因13)突变的蚊子,使用HRMA进行基因分型,并进行序列验证(图5)。 图5A 和 图5C 分别显示了 AeEZIP11 和 肌-fem 突变样品的HRM曲线以及野生型对照的归一化荧?…

Discussion

高分辨率熔融分析为鉴定CRISPR/Cas9技术在载体蚊子 埃及伊蚊中产生的内含物提供了一种简单快速的解决方案。它提供了灵活性,使蚊子的基因分型能够突变,从飞行肌肉到铁代谢等多种基因1314。从样品采集到最终分析,HRMA可以在几个小时内完成。引物设计需要额外的时间,并且还取决于接收任何所需测序结果(用于鉴定SNP)、序列分析和引物…

開示

The authors have nothing to disclose.

Acknowledgements

所有数字都是在德克萨斯A&M大学的许可下 Biorender.com 创建的。这项工作得到了国家过敏和传染病研究所(AI137112和AI115138到Z.N.A.),昆虫媒介疾病资助计划下的德克萨斯A&M AgriLife研究以及美国农业部国家食品和农业研究所,哈奇项目1018401的资金支持。

Materials

70% Ethanol 70% ethanol solution in water
96-well PCR and Real-time PCR plates VWR 82006-636 For obtaining genomic DNA (from the mosquito leg)
96-well plate templates House-made printed, for genotype recording
Bio Rad CFX96 Bio Rad PCR machine with gradient and HRMA capabilities
Diversified Biotech reagent reservoirs VWR 490006-896
Exo-CIP Rapid PCR Cleanup Kit New England Biolabs E1050S
Glass Petri Dish VWR 89001-246 150 mm x 20 mm
Hard-shell thin-wall 96-well skirted PCR plates Bio-rad HSP9665 For HRMA
Multi-channel pipettor (P10) Integra Biosciences 4721
Multi-channel pipettor (P300) Integra Biosciences 4723
Nunc Polyolefin Acrylate Sealing tape, Thermo Scientific VWR 37000-548 To use with the 96-well  PCR plates for obtaining genomic DNA
Optical sealing tape Bio-rad 2239444 To use with the 96-well skirted PCR plates for HRMA
Phire Animal tissue direct PCR Kit (without sampling tools) Thermo Fisher F140WH For obtaining genomic DNA and performing PCR
Plastic Fly Vial Dividers Genesee 59-128W
Precision Melt Analysis Software Bio Rad 1845025 Used for genotyping the mosquito DNA samples and analyzing the thermal denaturation properties of double-stranded DNA (see protocol step 3.3)
SeqMan Pro DNAstar Lasergene software For multiple sequence alignment
Single-channel pipettor Gilson
Tweezers Dumont #5 11 cm WPI 14098
White foam plugs VWR 60882-189
Wide Drosophila Vials, Polystyrene Genesee 32-117
Wide Fly Vial Tray, Blue Genesee 59-164B

参考文献

  1. WHO. Dengue Guidelines for diagnosis, treatment, prevention and control. WHO. , 160 (2009).
  2. WHO. Zika epidemiology update. WHO. , 1-13 (2019).
  3. WHO. Guidelines for prevention and control of Chikungunya fever. WHO. , (2009).
  4. World malaria report 2020: 20 years of global progress and challenges. World Health Organization Available from: https://www.who.int/publications/i/item/9789240015791 (2020)
  5. Qiu, P., et al. Mutation detection using Surveyor nuclease. Biotechniques. 36 (4), 702-707 (2004).
  6. Babon, J. J., McKenzie, M., Cotton, R. G. The use of resolvases T4 endonuclease VII and T7 endonuclease I in mutation detection. Molecular Biotechnology. 23 (1), 73-81 (2003).
  7. Erali, M., Voelkerding, K. V., Wittwer, C. T. High resolution melting applications for clinical laboratory medicine. Experimental and Molecular Pathology. 85 (1), 50-58 (2008).
  8. Reed, G. H., Wittwer, C. T. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clinical Chemistry. 50 (10), 1748-1754 (2004).
  9. Parant, J. M., George, S. A., Pryor, R., Wittwer, C. T., Yost, H. J. A rapid and efficient method of genotyping zebrafish mutants. Developmental Dynamics. 238 (12), 3168-3174 (2009).
  10. Tong, S. Y., Giffard, P. M. Microbiological applications of high-resolution melting analysis. Journal of Clinical Microbiology. 50 (11), 3418-3421 (2012).
  11. Simko, I. High-resolution DNA melting analysis in plant research. Trends in Plant Science. 21 (6), 528-537 (2016).
  12. Basu, S., et al. Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America. 112 (13), 4038-4043 (2015).
  13. O’Leary, S., Adelman, Z. N. CRISPR/Cas9 knockout of female-biased genes AeAct-4 or myo-fem in Ae. aegypti results in a flightless phenotype in female, but not male mosquitoes. PLoS Neglected Tropical Diseases. 14 (12), 0008971 (2020).
  14. Kojin, B. B., et al. Aedes aegypti SGS1 is critical for Plasmodium gallinaceum infection of both the mosquito midgut and salivary glands. Malaria Journal. 20 (1), 11 (2021).
  15. Ye, J., et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 13, 134 (2012).
  16. Larkin, M. A., et al. Clustal W and Clustal X version 2.0. バイオインフォマティクス. 23 (21), 2947-2948 (2007).
  17. Notredame, C., Higgins, D. G., Heringa, J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology. 302 (1), 205-217 (2000).
  18. Bassett, A. R., Tibbit, C., Ponting, C. P., Liu, J. L. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Reports. 6 (6), 1178-1179 (2014).
  19. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research. 31 (13), 3406-3415 (2003).
  20. Hill, J. T., et al. Poly peak parser: Method and software for identification of unknown indels using sanger sequencing of polymerase chain reaction products. Developmental Dynamics. 243 (12), 1632-1636 (2014).
  21. Tsujimoto, H., Anderson, M. A. E., Myles, K. M., Adelman, Z. N. Identification of candidate iron transporters from the ZIP/ZnT gene families in the mosquito Aedes aegypti. Frontiers in Physiology. 9, 380 (2018).
  22. Slomka, M., Sobalska-Kwapis, M., Wachulec, M., Bartosz, G., Strapagiel, D. High resolution melting (HRM) for high-throughput genotyping-limitations and caveats in practical case studies. International Journal of Molecular Sciences. 18 (11), 2316 (2017).
  23. Vouillot, L., Thelie, A., Pollet, N. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3. 5 (3), 407-415 (2015).

Play Video

記事を引用
Kojin, B. B., Tsujimoto, H., Jakes, E., O’Leary, S., Adelman, Z. N. Indel Detection following CRISPR/Cas9 Mutagenesis using High-resolution Melt Analysis in the Mosquito Aedes aegypti. J. Vis. Exp. (175), e63008, doi:10.3791/63008 (2021).

View Video