双树脂铸造微计算机断层扫描(DUCT)可同时实现两个管状系统的可视化、数字化和分割,从而促进器官结构的3D分析。DUCT将两种不透射线树脂的 离体 注射相结合,然后进行微计算机断层扫描和断层扫描数据分割。
肝脏是人类和小鼠最大的内部器官,高自发荧光对于在全器官水平上评估器官的三维(3D)结构提出了重大挑战。肝脏结构的特点是多个分支的腔化结构,可以填充树脂,包括血管和胆道树,在其他富含肝细胞的实质中建立高度刻板的模式。该协议描述了用于执行双树脂铸造微计算机断层扫描或”DUCT”的管道。DUCT需要用两种不同的不透射线的合成树脂注射门静脉和胆总管,然后进行组织固定。通过用光学清除剂清除一个叶或整个肝脏来控制质量控制,可以对适当注射的样品进行预筛选。在DUCT管道的第二部分,叶或整个肝脏可用于微计算机断层扫描(microCT)扫描,(半)自动分割以及门静脉和胆道网络的3D渲染。MicroCT产生两种树脂的3D坐标数据,从而可以对两种系统及其空间关系进行定性和定量分析。DUCT可以应用于产后和成年小鼠肝脏,并且可以进一步扩展到其他管状网络,例如肺部的血管网络和气道。
风琴树脂铸造是一种可追溯到17世纪的 技术1。现代树脂铸造的第一个例子之一是通过尸检对人体肝脏进行的。肝内胆管填充与明胶混合的造影剂,然后用X射线CT扫描进行成像2。DUCT技术的目的是以3D形式串联可视化,数字化和分析两个管状树脂浇注网络。
DUCT 基于对单系统肝脏树脂铸造的广泛现有知识3、4、5、6、7、8 ,并扩展到两个系统的同时进行 3D 可视化和分析9。DUCT通过将两种不同对比度的不透射线树脂混合并将这些树脂注入两种不同的网络(特别是胆总管和门静脉)来将单树脂铸造先进到双树脂铸造。DUCT可以应用于年轻的产后小鼠,其结果最早可在出生后第15天(P15)产生可重复的结果。与基于显微镜的成像技术相比,主要优点是DUCT速度更快,无抗体,并且肝组织自发荧光不会干扰成像。此外,DUCT还提供描述流明状态,内径,网络连接和灌注的定量数据。区分腔内形成细胞的存在及其事实上的成形形成为管子对于分析存在导管细胞但不形成管的器官至关重要,如Alagille综合征10中的情况。DUCT的主要缺点是树脂的穿透力有限,树脂是粘稠的,不会进入小口径(<5μm)的管子。DUCT可应用于确定注射入口点后的任何肾小管结构,如动脉和静脉循环系统、气道、肝外胆管或淋巴管。因此,它可以促进其他组织(如肺和胰腺)的整个器官结构分析。
MicroCT分割图像可以使用市售的成像软件(如ImageJ)或定制编写的管道(例如MATLAB)进行处理。可以定性地分析树脂注射的肝脏的网络扩展和连通性,或者定量分析单个系统的体积,长度,分支,曲率,以及两个系统之间的相互作用,例如两个系统之间的距离,或分支点依赖性(系统1是否分支靠近系统2分支?)。包括树脂注射、microCT扫描和CT数据分割在内的DUCT管道,结合对两个管状系统结构机制的详细定量分析,可以为动物模型中的全肝分析提供标准。
几个关键步骤决定了PUCT的成功,从样品制备到CT设备的参数。为了获得最佳效果,应使用对比度好、注射良好且无气泡的树脂,以便通过自动阈值进行简单的数字处理,从而获得 3D 数据、图像和短片。通过训练并遵循该协议,90%的注射是成功的,并产生可重复的数据。重要的是使用新鲜的黄色树脂来实现两种注射系统之间的最佳对比度。黄色树脂具有很强的不渗透力,而蓝色树脂具有检测不到的不透明度。在打开新的黄色树脂瓶后的前三个月内取得了最佳效果。随着时间的推移,树脂沉淀,经过更长时间的储存(>6个月),黄色和绿色树脂在CT扫描中将不再可区分。对比度较差的图像需要对两个系统进行广泛且耗时的手动跟踪和分割。接下来,拉伸良好的导管对于适应成年小鼠的胆总管和产后小鼠的胆总管和门静脉是必不可少的。注射的入口点必须小心创建。如果胆总管经横向切开,则可能会从周围组织脱落,从而阻止管子成功进入。这一步对于产后小鼠尤其微妙,其中胆总管缩回并”卷曲”,如果它已经脱离其周围组织,使得导管的插入极具挑战性。胆总管进入和注射可能需要一些练习。在用树脂和整个注射过程中制备管道时,请避免气泡形成,因为气泡会在CT图像中产生负空间,并且需要耗时的手动校正。重要的是,在注射过程中和之后,用润湿的棉签在肝脏表面滚动,轻轻按摩肝脏,因为这有利于均匀的树脂扩散。注射完成后,去除管子,必须快速小心地拧紧丝缝结,这样树脂在完全聚合之前不会流出肝脏。为了成功进行microCT成像,必须用琼脂糖将样品正确固定到位,并进行热适应,以消除CT数据中的运动伪影。采集设置也至关重要,应对其进行优化,以达到足够的空间分辨率,从而解析精细结构。
可以对注射程序进行技术修改,以实现年轻小鼠的注射。目前,年轻小鼠肝脏的树脂浇注受到足够薄的管的可用性的限制,PE10是最小的市售管材。Tanimizu等人使用玻璃毛细管成功地将碳墨水注入胚胎第17天(E17)胆总管11。因此,未来对树脂是否可以通过玻璃毛细管输送的测试将是一个值得关注的问题。DUCT进一步适应注射其他管状系统,如肺的气道和肺动脉脉管系统9。双树脂注射剂也可以改性以与其他市售树脂一起使用,或者该协议可用于碳油墨注射剂。
DUCT管道的主要限制因素之一是树脂粘度。DUCT 只能用于直径大于 5 μm 的管状结构的树脂浇注。在该数据集中,树脂可以穿透最小直径为5μm9的管子。这种尺寸限制排除了细小导管和小毛细血管的分析。为了进一步将DUCT管道推进到较小口径的容器,应测试其他市售树脂,或者开发新的低粘度不透射线剂可以提高腔渗透率。
在Hankeova等人9中,将DUCT与其他两种常用技术进行比较,双碳墨水注射,然后进行组织清除和标准摄影,以及iDISCO +用α-平滑肌细胞肌动蛋白染色血管和胆管用细胞角蛋白7染色,然后进行3D成像9。DUCT在双重分析(由于肝脏自发荧光高),3D成像和定量(碳墨水注射无法实现)和流明(DUCT为内部腔结构和系统灌注提供数据)方面优于其他两种方法。如上所述,DUCT的主要限制是可以注入和分析的最小流明尺寸(5μm限制),其中碳墨水注入和iDISCO +都表现更好的参数。DUCT 优于单系统树脂铸造3,5,6 ,因为它允许单独分析每个注入系统,并且还有助于双 3D 研究以研究两个系统之间的架构关系。
DUCT可以应用于3D中研究任何两个管状网络。作为原理证明,DUCT用于可视化肺的肝胆和门静脉系统以及肺动脉脉管系统和气道9。肝内胆管在门静脉附近发育,门静脉提供结构模板和信号中心,调节胆道树的生长和分化12。在Hankeova等人9中,DUCT在人类儿科疾病Alagille综合征的小鼠模型中探索了胆道再生。DUCT揭示了以前未报道的胆道系统用于实现野生型体积的架构机制9。Alagille综合征小鼠使用两种不同的策略:(1)在肝脏的肺门和中央区域,胆道系统增加了其分支,(2)在肝脏外围,从头产生的胆管高度曲折。这两个因素结合在一起,产生了接近正常的胆道系统体积,尽管结构异常。此外,DUCT检测到异常的胆管分支,该分支与门静脉分支和胆管在两个门静脉之间形成连接桥无关9。这些表型在单个树脂铸件中是不可能检测到的,并且在2D组织学切片中可能会被误解为胆管增殖。因此,DUCT提供了描述整个器官或肺叶水平上两个管状网络的3D结构的数据,并具有定性和深入定量分析的可能性。DUCT可以成为不同动物模型中产后肝脏发育和肝脏再生分析的新标准。
The authors have nothing to disclose.
我们感谢Kari Huppert和Stacey Huppert在胆管插管和实验室接待方面的专业知识和帮助。我们还感谢Nadja Schultz和Charlotte L. Mattsson对胆总管插管的帮助。
我们感谢以下资助机构的支持:
在ERA实验室的工作:Karolinska Institutet(2-560/ 2015-280),Stockholms Läns Landsting(CIMED(2-538/ 2014-29)),Ragnar Söderbergs stiftelse(瑞典基金会的起始补助金),欧洲肝脏研究协会(Daniel Alagille奖),瑞典心肺基金会(20170723)和Vetenskapsrådet(2019-01350)。
对于JK实验室的工作:我们感谢MEYS CR(LM2018110)支持的捷克NanoLab研究基础设施。J.K.感谢FSI-S-20-6353的支持。
1.5 mL SafeSeal micro tubes | Sarstedt | 72.706 | |
23 G butterfly needle with tubing | BD bioscience | 367283 | |
25 G needle | BD bioscience | 305122 | |
30 G needle | BD bioscience | 305106 | |
Agarose | Top-Bio | P045 | |
Benzyl alcohol | Sigma Aldrich | 108006 | |
Benzyl benzoate | Sigma Aldrich | B6630 | |
Corning 50 mL tubes | Sigma Aldrich | CLS430829-500EA | polypropylene |
Cotton swabs | Medicarier | 60406 | |
Dissection Microscope | Leica Camera AG | Leica M60 | |
Dulbecco's phosphate-buffered saline | ThermoFisher Scientific | 14190144 | |
Ethanol 70% | VWR | 83801.41 | |
Falcon tube 15 mL | Verkon | 331.850.084.006 | |
Forceps curved | Fine Science Tools | 11051-10 | Fine Graefe 10 cm curved |
Forceps straight | Fine Science Tools | 11050-10 | Fine Graefe 10 cm straight |
Formaldehyde solution | Sigma Aldrich | F8775 | |
GE Phoenix v|tome|x L 240 | Waygate Technologoies | micro computed tomography scanner | |
Hanks' Balanced Salt Solution | ThermoFisher Scientific | 14025092 | |
Heparin | Leo Pharma | B01AB01 | 5000 IE/mL |
Isolfurane | Baxter | FDG9623 | |
Methanol | ThermoFisher Scientific | 11413413 | |
MICROFIL | Flowtech | MV-122 | synthetic resin yellow |
MICROFIL | Flowtech | MV-120 | synthetic resin blue |
MICROFIL | Flowtech | MV-diluent | clear resin diluent |
Pasteur pipette | Verkon | 130.690.424.503 | |
Peristaltic pump | AgnThos | 010.6131.M20 | |
phoenix datos|x 2.0 software | Baker Hughes | CT data reconstruction software | |
Rocker | VWR | 444-0142 | |
Silk suture | AgnThos | 14757 | Black silk, 4-0, sterile, 100 m |
Skin scissor | Fine Science Tools | 14058-09 | Iris straight tip 9 cm |
Spring scissor | Fine Science Tools | 15000-03 | Vannas micro, straight tip 2 mm |
Syringe 1 mL Luer | BD bioscience | 303172 | |
Tubing PE10 | BD bioscience | 427401 | |
Tubing PE50 | BD bioscience | 427411 | |
VG Studio MAX 3.3 software | Volume Graphics GmbH | CT data processing and analysis software |