概要

时间分辨Förster共振能量转移测定法,用于测量人细胞中的内源性磷酸化STAT蛋白

Published: September 09, 2021
doi:

概要

描述了基于时间分辨Förster共振能量转移细胞的测定方案,用于以384孔格式对细胞裂解物中内源性磷酸化信号转导和转录激活子(STAT)1/3/4/5/6蛋白的有效定量进行简单,特异性,灵敏和稳健的定量。

Abstract

Janus激酶(JAK)/信号转导器和转录激活子(STAT)信号通路在介导细胞对细胞因子和生长因子的反应中起着至关重要的作用。STAT蛋白被主要由JAKs介导的酪氨酸磷酸化激活。STAT信号通路的异常激活与许多人类疾病有关,特别是癌症和免疫相关疾病。因此,在天然细胞信号传导环境中监测STAT蛋白磷酸化的能力对于学术和药物发现研究都很重要。可用于定量磷酸化STAT蛋白的传统测定形式包括蛋白质印迹和酶联免疫吸附测定(ELISA)。这些异构方法是劳动密集型的,低通量,并且在蛋白质印迹的情况下通常不可靠(特异性)。均质(无洗涤)方法可用,但仍然昂贵。

在这里,提供了详细的实验方案,以384孔的形式对使用新型THUNDER时间分辨Förster共振能量转移(TR-FRET)平台的细胞裂解物中的磷酸化STAT1(Y701),STAT3(Y705),STAT4(Y693),STAT5(Y694 / Y699)和STAT6(Y641)的内源性水平进行测量。细胞检测的工作流程简单、快速,专为高通量筛选 (HTS) 而设计。该测定方案非常灵活,使用低容量样品(15 μL),只需要一个试剂添加步骤,并且可以适应低通量和高通量应用。每个磷酸化-STAT三明治免疫测定均在优化条件下使用已知的激动剂和抑制剂进行验证,并产生预期的药理学和Z’因子值。由于TR-FRET测定是成比例的,不需要洗涤步骤,因此与传统方法相比,它们具有更好的再现性。总之,这套检测方法为细胞处理后对特定的磷酸化STAT蛋白进行更全面的分析以及JAK / STAT信号通路的特异性和选择性调节剂的筛选和表征提供了新的经济高效的工具。

Introduction

JAK/STAT信号通路在介导细胞对各种细胞因子、干扰素、生长因子和相关分子的反应方面起着关键作用12。这些配体与特定细胞表面受体的结合导致JAKs的激活,而JAKs又通过特定酪氨酸残基的磷酸化来激活STAT蛋白。STAT磷酸化导致它们二聚化和易位到细胞核中,在那里它们对受调控靶基因的转录产生影响。STAT 系列由七个成员组成:STAT1、STAT2、STAT3、STAT4、STAT5a、STAT5b 和 STAT6。这些成员在生理细胞过程的调节中起着复杂而重要的作用,包括增殖,分化,凋亡,血管生成和免疫系统调节。STAT信号通路的异常激活与许多人类疾病有关,特别是癌症和免疫相关疾病34。因此,在天然细胞信号传导环境中评估STAT蛋白磷酸化的能力对于学术和药物发现研究都很重要。

迄今为止,用于测量细胞内磷酸化蛋白水平(包括STAT)的常规方法是基于抗体的,包括蛋白质印迹,ELISA和磷流细胞术。这些异构方法劳动密集型、耗时、容易出错、通量低,并且在免疫印迹的情况下通常不可靠(例如,特异性问题)5。相反,均质测定需要较少的实验步骤,使用较小的样品体积,并且适合HTS。市售的基于细胞的五种均质免疫测定平台可用于定量监测细胞裂解物中STAT的JAK依赖性磷酸化:SureFire,HTRF,LANCE,LanthaScreen和Lumit。这些平台中的每一个都有其优点和缺点。

SureFire基于发光氧通道技术,该技术利用包被的供体和受体珠来特异性捕获一对抗体,其中一种是生物素化的。在磷酸化蛋白存在下,两种抗体使供体和受体珠近距离接触,从而产生化学发光信号6。虽然该技术用途广泛且灵敏,但价格昂贵,受培养基中生物素的影响,对环境温度和光线非常敏感,并且需要特殊的读数仪进行检测。HTRF和LANCE均基于TR-FRET技术,该技术利用长寿命发光镧系元素离子络合物(铕或铽螯合物,或铕隐酸盐)作为供体分子,利用远红色荧光团作为受体分子7。当用供体或受体分子标记的两种蛋白质特异性抗体被近距离接触时,发生FRET,导致受体荧光增加和供体荧光降低。这些长寿命荧光信号可以以时间分辨和比例方式进行测量,以减少测定干扰并提高数据质量。TR-FRET的其他优点是它不感光,允许重复读数,并表现出长信号稳定性。虽然TR-FRET由于其多功能性,灵敏度和高鲁棒性而在HTS中广泛实施,但所有基于TR-FRET的商用分析平台都很昂贵,因此无法将其广泛用于学术和小型工业实验室。LanthaScreen测定也使用基于TR-FRET的读数,但依赖于工程化的U2OS细胞系,该细胞系稳定地表达绿色荧光蛋白(GFP)-STAT1融合蛋白与铽标记的磷酸特异性STAT1抗体8。除了在信号蛋白的选择方面受到限制外,这种方法还需要购买昂贵的转染细胞系,从而降低了其适用性并增加了实验伪影的可能性。Lumit是一种通用的生物发光免疫测定平台,利用二抗(抗小鼠和抗兔)化学标记的NanoLuc荧光素酶9的小型和大型NanoBit亚基。两种一抗与靶蛋白的结合使二抗接近,形成产生发光信号的活性酶。虽然发光通常是一种灵敏而可靠的读数,但对两种不同物种中产生的一抗的要求限制了测定设计的选择。此外,在复杂样品基质中使用二抗可能容易受到测定干扰。

因此,仍然需要一种可靠、快速且经济实惠的基于细胞的测定平台,以与HTS兼容的方式测量单个磷酸化和总STAT蛋白。为了满足这一需求,基于增强型TR-FRET技术(THUNDER)开发了一种新的高通量基于细胞的免疫测定平台,旨在能够对细胞裂解物中内源性表达的细胞内蛋白(磷酸化或总)进行简单,灵敏,稳健且经济高效的测量。该技术的优势源于供体/受体FRET对的组合,具有出色的光谱相容性和TR-FRET信号,严格验证的抗体和优化的裂解缓冲液。这些测定被格式化为三明治免疫测定,并使用简单的三步工作流程(图1)。首先处理细胞以调节蛋白质磷酸化,然后用试剂盒中提供的特异性裂解缓冲液裂解。在单个试剂添加和孵育步骤中检测细胞裂解物中的靶磷酸化或总STAT蛋白,并使用一对荧光团标记的抗体检测靶标磷酸化或总STAT蛋白,这些抗体可识别靶蛋白上的不同表位(图2)。一种抗体用铕螯合供体(Eu-Ab1)标记,而第二种抗体用远红色受体荧光团(FR-Ab2)标记。两种标记的抗体与溶液中的蛋白质结合,使两种标记非常接近。在320或340nm处激发供体铕螯合物触发FRET到受体,其在665nm处发出长寿命TR-FRET信号,与细胞裂解物中靶蛋白(磷酸化或总)的浓度成比例。

Figure 1
图1:TR-FRET测定工作流程。 工作流程包括三个步骤:细胞处理、细胞裂解和使用 TR-FRET 进行蛋白质检测。在双板检测方案中,裂解物被转移到白色384孔检测板中,而在单板方案中,所有步骤都在同一个白色384孔检测板(一体式检测方案)中进行。无论使用何种检测方案,蛋白质检测均以相同的总体积(每孔20μL)进行。缩写:TR-FRET = 时间分辨的 Förster 共振能量转移。 请点击此处查看此图的放大版本。

Figure 2
图2:TR-FRET三明治免疫测定原理。 一种抗体用铕螯合物供体(Eu-Ab1)标记,第二种抗体用远红色的小荧光团受体(FR-Ab2)标记。两种标记的抗体特异性地结合细胞裂解物中靶蛋白(磷酸化或总)上的不同表位,使两个荧光团非常接近。在320或340nm处激发供体铕螯合物触发从供体到受体分子的FRET,其反过来在665nm处发射信号。该信号与细胞裂解物中蛋白质的浓度成正比。在没有特异性靶蛋白的情况下,供体和受体荧光团彼此相距太远,无法发生FRET。缩写:FRET = Förster 共振能量转移;TR-FRET = 时间分辨 FRET;抗体=抗体;FR = 远红;Eu – 铕螯合物;P = 磷酸化。 请点击此处查看此图的放大版本。

在这里,提供了详细的方案,用于以384孔格式测量磷酸化STAT1(Y701),STAT3(Y705),STAT4(Y693),STAT5(Y694 / Y699)和STAT6(Y641)的细胞内水平,以及使用THUNDER TR-FRET平台的贴壁或悬浮细胞的细胞裂解物中的总STAT1,STAT3,STAT5和STAT6。这些方案定义了使用双板转移方案或单板一体孔方案进行细胞处理、裂解和基于TR-FRET的靶蛋白检测的步骤。这些基于细胞的测定用于确定JAK / STAT途径的已知激活剂和抑制剂的药理学谱。证明了所选HTS检测的稳健性和适用性。最后,讨论了分析优化的关键实验,以及分析故障排除的建议。

Protocol

1. 细胞培养 将细胞维持在加湿的37°C / 5%CO 2 培养箱中,并用补充10%胎牛血清(FBS)(HeLa和A431细胞)或补充15S(U266B1细胞)的DMEM培养。培养细胞直到它们达到70-80%汇合,然后胰蛋白酶消化并传代或用于测定。注:培养基含有酚红。在进行测定之前,未对任何细胞系进行血清饥饿。 2. 使用贴壁细胞的两板测定方案进行刺激剂或抑制剂滴定 <p class="jove_…

Representative Results

每个THUNDER TR-FRET测定都通过用JAK / STAT途径特异性激活剂或抑制剂处理贴壁细胞(HeLa或A431)或悬浮细胞(U266B1),然后在适用的情况下测量特异性磷酸化和总STAT的水平进行药理学验证。使用双板转移方案和预优化的测定条件以384孔格式进行测定。 图3, 图4, 图5, 图6和 图7 总结了所?…

Discussion

与传统的磷酸蛋白分析方法(如蛋白质印迹和基于ELISA的方法)相比,THUNDER TR-FRET细胞测定的工作流程简单快捷,使用低容量样品(15μL),专为384孔格式的HTS而设计,并且非常适合自动化。检测方案非常灵活,可轻松适应中通量和高通量应用。可以使用双板转移方案或单-384孔板方案进行测定。在双板转移方案中,将细胞接种,处理和裂解到一个细胞培养板中,然后将裂解物转移到单独的白色检?…

開示

The authors have nothing to disclose.

Acknowledgements

没有。

Materials

96-well microplate, clear, flat bottom, polystyrene, tissue culture-treated, sterile Corning 3595 This is the plate for culturing cells when using the two-plate assay protocol. Other cell culture 96-well plates can be used
384-well microplate, white, low-volume PerkinElmer 6007290 This is the plate for TR-FRET detection when using the two- or one-plate assay protocols. Other low-volume, white 384-well plates can be used
A431 cell line ATCC CRL-1555
Adhesive microplate seal PerkinElmer 6050185
DMSO Fisher D159-4
Dulbecco’s modified Eagle medium (DMEM) Wisent 319-005-CL  THUNDER TR-FRET is compatible with culture medium containing phenol red
EnVision Xcite Multilabel plate reader PerkinElmer 2104-0020A The assays can be performed on a variety of plate readers equipped with the TR-FRET option
Erlotinib hydrochloride Sigma CDS022564
Falcon tissue culture treated flasks Fisher 13-680-65
Fetal bovine serum (FBS) Wisent 098-150
HeLa cell line ATCC CCL-2
JAK Inhibitor 1 Cayman Chemical 15146
Orbital plate shaker Many options available Not applicable
Recombinant human EGF PeproTech AF-100-15
Recombinant human IFNα2b ProSpec CYT-460
Recombinant human IL-4 R&D Systems 204-IL
Roswell Park Memorial Institute 1640 medium (RPMI) Wisent 350-007-CL THUNDER TR-FRET is compatible with culture medium containing phenol red
THUNDER Phospho-STAT1 (Y701) + Total STAT1 TR-FRET Cell Signaling Assay Kit BioAuxilium Research KIT-STAT1PT-500
THUNDER Phospho-STAT3 (Y705) + Total STAT3 Cell Signaling Assay Kit BioAuxilium Research KIT-STAT3PT-500
THUNDER Phospho-STAT4 (Y693) + Total STAT4 TR-FRET Cell Signaling Assay Kit BioAuxilium Research KIT-STAT4PT-500
THUNDER Phospho-STAT5 (Y694/Y699) + Total STAT5 TR-FRET Cell Signaling Assay Kit BioAuxilium Research KIT-STAT5PT-500
THUNDER Phospho-STAT6 (Y641) + Total STAT6 TR-FRET Cell Signaling Assay Kit BioAuxilium Research KIT-STAT6PT-500
Trypsin/EDTA 0.05% Wisent 325-542-CL
U266B1 cell line ATCC TIB-196
Ultrapure water NA NA Use Milli-Q grade water (18 MΩ.cm) to dilute Lysis Buffer and Detection Buffer

参考文献

  1. Villarino, A., Kanno, Y., O’Shea, J. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nature Immunology. 18 (4), 374-384 (2017).
  2. Hammarén, H. M., Virtanen, A. T., Raivola, J., Silvennoinen, O. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine. 118, 48-63 (2019).
  3. O’Shea, J. J., et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annual Review of Medicine. 66, 311-328 (2015).
  4. Verhoeven, Y., et al. et al. potential and controversy of targeting STAT family members in cancer. Seminars in Cancer Biology. 60 (2), 41-56 (2020).
  5. Gilda, J. E., et al. et al. blotting inaccuracies with unverified antibodies: need for a Western blotting minimal reporting standard (WBMRS). PLoS One. 10 (8), 0135392 (2015).
  6. Binder, C., et al. et al. and utilization of the SureFire phospho-STAT5 assay for a cell-based screening campaign. Assay and Drug Development Technologies. 6 (1), 27-37 (2008).
  7. Ayoub, M. A., et al. Homogeneous time-resolved fluorescence-based assay to monitor extracellular signal-regulated kinase signaling in a high-throughput format. Frontiers in Endocrinology. 5, 94 (2014).
  8. Robers, M. B., Machleidt, T., Carlson, C. B., Bi, K. Cellular LanthaScreen and beta-lactamase reporter assays for high-throughput screening of JAK2 inhibitors. Assay and Drug Development Technologies. 6 (4), 519-529 (2008).
  9. Hwang, B., Engel, L., Goueli, S. A., Zegzouti, H. A. Homogeneous bioluminescent immunoassay to probe cellular signaling pathway regulation. Communications Biology. 3 (8), 1-12 (2020).
  10. Zhang, J. H., Chung, T. D., Oldenburg, K. R. A simple statistical parameter for use in evaluation and validation of high-throughput screening assays. Journal of Biomolecular Screening. 4 (2), 67-73 (1999).
  11. Osmond, R. I. W., Das, S., Crouch, M. F. Development of cell-based assays for cytokine receptor signaling, using an AlphaScreen SureFire assay format. Analytical Biochemistry. 403 (1-2), 94-101 (2010).
  12. Haan, C., et al. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors. Chemistry & Biology. 18 (3), 314-323 (2011).
  13. Kim, Y., Apetri, M., Luo, B., Settleman, J. E., Anderson, K. S. Differential effects of tyrosine kinase inhibitors on normal and oncogenic EGFR signaling and downstream effectors. Molecular Cancer Research. 13 (4), 765-774 (2015).
  14. Qian, J., et al. Comparison of two homogeneous cell-based kinase assays for JAK2 V617F: SureFire pSTAT5 and GeneBLAzer fluorescence resonance energy transfer assays. ASSAY and Drug Development Technologies. 10 (2), 212-217 (2012).
  15. Iversen, P. W., et al., Markossian, S., et al. HTS assay validation. Assay Guidance Manual. , (2012).
  16. Muelas, M. W., Ortega, F., Breitling, R., Bendtsen, C., Westerhoff, H. V. Rational cell culture optimization enhances experimental reproducibility in cancer cells. Scientific Reports. 8, 3029 (2018).

Play Video

記事を引用
Padros, J., Chatel, G., Caron, M. Time-resolved Förster Resonance Energy Transfer Assays for Measurement of Endogenous Phosphorylated STAT Proteins in Human Cells. J. Vis. Exp. (175), e62915, doi:10.3791/62915 (2021).

View Video