ANS bindet an die ca2+-ATPase rekombinante N-Domäne. Fluoreszenzspektren zeigen bei Anregung bei einer Wellenlänge von 295 nm ein FRET-ähnliches Muster. NBS-vermittelte chemische Modifikation von Trp löscht die Fluoreszenz der N-Domäne, was zum Fehlen eines Energietransfers (FRET) zwischen dem Trp-Rückstand und ANS führt.
Das sarko-/endoplasmatische Retikulum Ca2+-ATPase (SERCA) ist eine P-Typ-ATPase, die in verschiedenen Konformationen kristallisiert wurde. Detaillierte funktionelle Informationen können jedoch aus isolierten rekombinanten Domänen gewonnen werden. Die entwickelte (Trp552Leu und Tyr587Trp) rekombinante Nukleotidbindungsdomäne (N-Domäne) zeigt eine Fluoreszenzabschreckung bei ligandenbindung. Ein extrinsisches Fluorophor, nämlich 8-Anilino-1-naphthalinsulfonat (ANS), bindet über elektrostatische und hydrophobe Wechselwirkungen mit Arg-, His-, Ala-, Leu- und Phe-Rückständen an die Nukleotidbindungsstelle. Die ANS-Bindung wird durch die Zunahme der Fluoreszenzintensität bei Einer Anregung bei einer Wellenlänge (λ) von 370 nm nachgewiesen. Bei einer Anregung bei λ von 295 nm scheint die Zunahme der Fluoreszenzintensität jedoch an das Abschrecken der intrinsischen N-Domänenfluoreszenz gekoppelt zu sein. Fluoreszenzspektren zeigen ein Föster-Resonanzenergieübertragungsmuster (FRET)-ähnliches Muster, was auf das Vorhandensein eines Trp-ANS FRET-Paares hindeutet, das durch die kurze Entfernung (~20 Å) zwischen Tyr587Trp und ANS unterstützt zu werden scheint. Diese Studie beschreibt eine Analyse des Trp-ANS FRET-Paares durch chemische Trp-Modifikation (und Fluoreszenzabschreckung), die durch N-Bromosuccinimid (NBS) vermittelt wird. In der chemisch modifizierten N-Domäne erhöhte sich die ANS-Fluoreszenz bei einer Anregung bei einem λ von 295 nm, ähnlich wie bei einer Anregung bei einem λ von 370 nm. Daher kann die NBS-vermittelte chemische Modifikation des Trp-Rückstands verwendet werden, um das Fehlen von FRET zwischen Trp und ANS zu untersuchen. In Abwesenheit von Trp-Fluoreszenz sollte man keinen Anstieg der ANS-Fluoreszenz beobachten. Die chemische Modifikation von Trp-Rückständen in Proteinen durch NBS kann nützlich sein, um FRET zwischen Trp-Rückständen zu untersuchen, die sich in der Nähe des gebundenen ANS befinden. Dieser Assay wird wahrscheinlich auch bei der Verwendung anderer Fluorophore nützlich sein.
Föster-Resonanz-Energietransfer (FRET) ist zu einer Standardtechnik zur Bestimmung des Abstands zwischen molekularen Strukturen nach Bindung oder Interaktion in Proteinstruktur- und Funktionsstudien1,2,3,4geworden. In P-Typ ATPasen wurde FRET verwendet, um die Struktur und Funktion des sarko-endoplasmatischen RetikulumsCa2+-ATPase (SERCA)2,5,6,7,8zu untersuchen, z. B. wurden strukturelle Fluktuationen während des katalytischen Zyklus im gesamten Protein mit FRET7analysiert.
FRET-Donatoren sind vielfältig und reichen von kleinen fluoreszierenden (extrinsischen) Molekülen bis hin zu fluoreszierenden Proteinen9,10. Tryptophan (Trp)-Rückstände (aufgrund ihrer Fluoreszenz) sind nützlich, um strukturelle Veränderungen in Proteinaminosäuresequenzen zu identifizieren11,12. Die Fluoreszenzintensität von Trp hängt wesentlich von der Polarität seiner Umgebung ab13,14. Die Ligandenbindung erzeugt in der Regel strukturelle Umlagerungen in Proteinen/Enzymen15,16. Wenn Trp an oder in der Nähe der Proteinbindungsstelle vorhanden ist, beeinflussen strukturelle Schwankungen häufig den Grad der Trp-Exposition gegenüber wässrigen Medien13,14; somit führt die Änderung der Polarität zum Abschrecken der Trp-Fluoreszenzintensität13,14. Daher ist die fluoreszierende Eigenschaft von Trp nützlich für die Durchführung von Ligandenbindungsstudien für Enzyme. Andere physikalische Phänomene können auch zu Trp-Fluoreszenzabschreckung17,18,19,20, z. B. FRET und Änderungen der mittleren Polarität führen. Auch der Energietransfer vom angeregten Zustand von Trp auf ein Fluorophor hat Anwendungsmöglichkeiten, z. B. die Affinitätsbestimmung kleiner Liganden in Proteinen21. Tatsächlich wurde Trp in erster Linie als Fluoreszenzdonor in FRET-Studien in Proteinen22,23,24verwendet, z. B. in Terbium (Tb3+) FRET-Studien wird ein Trp-Rückstand häufig als Antenne zur Energieübertragung auf Tb3+25,26,27verwendet. Trp zeigt verschiedene Vorteile gegenüber anderen FRET-Spendern aufgrund seines inhärenten konstitutiven Charakters in der Proteinstruktur, wodurch die Notwendigkeit präparativer Prozesse, die die Funktion / Struktur des untersuchten Proteins beeinflussen können, eliminiertwird 24. Daher ist die Identifizierung von Strahlungszerfällen (Energietransfer und Veränderungen der mittleren Polarität, die durch proteinstrukturelle Umlagerungen induziert werden) wichtig, um genaue Rückschlüsse auf die Ligandenbindung in Proteinstrukturstudien zu ziehen13,14,19,28.
In Proteinstrukturstudien wurde ein extrinsisches Fluorophor, nämlich 8-Anilino-1-naphthalinsulfonat (ANS), hauptsächlich in Experimenten im Zusammenhang mit der Proteinfaltung / -entfaltungverwendet 28,29. ANS bindet an Proteine/Enzyme im nativen Zustand, meist an den Bindungsstellen der Substrate31,32,33; eine Erhöhung der ANS-Fluoreszenzquantenausbeute (ΦF) (nämlich eine Erhöhung der Fluoreszenzintensität) wird durch Anregen des Proteins bei λ=370 nm induziert, wenn geeignete Wechselwirkungen von ANS mit Arg und His-Rückständen in hydrophoben Taschen auftreten34,35,36,37. In verschiedenen Studien wurde das Auftreten von FRET (bei Anregung bei λ innerhalb von 280-295 nm) zwischen Trp-Rückständen (Spendern) und ANS (Akzeptor) berichtet, das auf Folgendem basiert: 1) Überlappung des Fluoreszenzemissionsspektrums von Trp und des Anregungsspektrums von ANS, 2) Identifizierung eines geeigneten Abstands zwischen einem oder mehreren Trp-Resten und ANS für die Energieübertragung, 3) hohe ANS-Quantenausbeute bei Bindung in Proteintaschen und 4) charakteristisches FRET-Muster in den Fluoreszenzspektren des Proteins in Gegenwart von ANS3,17,27,37,38.
Kürzlich wurde die Ligandenbindung an die Nukleotidbindungsdomäne (N-Domäne) in SERCA und anderen P-Typ-ATPasen unter Verwendung von technisch hergestellten rekombinanten N-Domänen40,41,42,43,44,45,46untersucht. Molecular Engineering der SERCA N-Domäne wurde verwendet, um den einzigen Trp-Rückstand (Trp552Leu) in eine dynamischere Struktur (Tyr587Trp) zu bewegen, die sich in der Nähe der Nukleotidbindungsstelle befindet, wo Fluoreszenzvariationen (Quenching) verwendet werden können, um strukturelle Veränderungen bei Ligandenbindung zu überwachen34. Experimentelle Ergebnisse haben gezeigt, dass ANS (als ATP) an die Nukleotidbindungsstelle in der gereinigten rekombinanten SERCA N-Domäne34bindet. Interessanterweise nimmt die ANS-Fluoreszenz bei der Bindung an die N-Domäne bei Anregung bei einem λ von 295 nm zu, während die intrinsische Fluoreszenz der N-Domäneum 34abnimmt, wodurch ein FRET-Muster erzeugt wird, das auf die Bildung eines Trp-ANS-FRET-Paares hindeutet.
Die Verwendung von NBS wurde vorgeschlagen, um den Gehalt an Trp-Rückständen in Proteinen47 durch Absorptionstest modifizierter Proteine zu bestimmen. NBS modifiziert die hochabsorbierende Indolgruppe von Trp zum weniger saugfähigen Oxindol47,48. Daraus ergibt sich der Verlust (Abschrecken) der Trp-Fluoreszenzeigenschaft40. Daher kann die NBS-vermittelte chemische Modifikation von Trp-Rückständen als Assay verwendet werden, um die Rolle von Trp (als Spender) zu definieren, wenn FRET hypothetisch ist.
Dieses Protokoll beschreibt die chemische Modifikation des einzigen Trp-Rückstands durch NBS in der technisch rekombinanten N-Domäne von SERCA als Proteinmodell. Experimentelle Ergebnisse zeigen, dass die ANS-Fluoreszenzintensität in der chemisch NBS-modifizierten N-Domäne34,der eine intrinsische Fluoreszenz fehlt, noch zunimmt. Daher ist der Assay nützlich, um das Fehlen von FRET zwischen dem Trp-Rückstand und ANS nachzuweisen, wenn es an die N-Domäne34,40,49gebunden ist . Daher ist dieser Assay (NBS chemische Modifikation von Trp) nützlich, um das Vorhandensein des Trp-ANS FRET-Paares in Proteinen nachzuweisen.
Fluoreszenzspektren des ANS-N-Domänenkomplexes zeigen ein FRET-ähnliches Muster, wenn sie bei einem λ von 295 nm angeregt werden, während der molekulare Abstand (20 Å) zwischen dem Trp-Rückstand und ANS das Auftreten von FRET zu unterstützen scheint (Abbildung 1). Die chemische Modifikation von Trp durch NBS führt zu einer weniger fluoreszierenden N-Domäne (Abbildung 3B, Spektrum f); daher ist eine Energieübertragung nicht möglich. Die ANS-Fluoreszenz…
The authors have nothing to disclose.
Diese Arbeit wurde teilweise durch die FAI-UASLP-Fördernummer C19-FAI-05-89.89 und die CONACYT-Zuschussnummer 316463 (Apoyos a la Ciencia de Frontera: Fortalecimiento y Mantenimiento de Infraestructuras de Investigación de Uso Común y Capacitación Técnica 2021)finanziert. Die Autoren danken der technischen Unterstützung von Julian E. Mata-Morales in der Videoausgabe.
Acrylamide | Bio-Rad | 1610107 | SDS-PAGE |
Ammonium persulfate | Bio-Rad | 1610700 | SDS-PAGE |
8-Anilino-1-naphthalenesulfonic acid | Sigma-Aldrich | A1028 | Fluorophore |
Bis-acrylamide | Bio-Rad | 1610125 | SDS-PAGE |
N-Bromosuccinimide | Sigma-Aldrich | B81255 | Chemical modification |
N,N-dimethylformamide | J.T. Baker | 9213-12 | Stock solution preparation |
Fluorescein isothiocyanate | Sigma-Aldrich | F7250 | Chemical fluorescence label |
Fluorescence cuvette | Hellma | Z801291 | Fluorescence assay |
Fluorescence Spectrofluorometer | Shimadzu | RF 5301PC | Fluorescence assay |
HisTrap™ FF | GE Healtcare | 11-0004-59 | Protein purification |
IPTG, Dioxane free | American Bionalytical | AB00841-00010 | Protein expression |
Imidazole | Sigma-Aldrich | I5513-25G | Protein purification |
LB media | Fisher Scientific | 10000713 | Cell culture |
Pipetman L P10L | Gilson | FA10002M | Fluorescence assay |
Pipetman L P100L | Gilson | FA10004M | Fluorescence assay |
Pipetman L P200L | Gilson | FA10005M | Fluorescence assay |
Pipetman L P1000L | Gilson | FA10006M | Fluorescence assay |
Pipetman L P5000L | Gilson | FA10007 | Fluorescence assay |
Precision plus std | Bio-Rad | 1610374 | SDS-PAGE |
Sodium dodecyl sulphate | Bio-Rad | 1610302 | SDS-PAGE |
Sodium phosphate dibasic | J.T. Baker | 3828-19 | Buffer preparation |
Sodium phosphate monobasic | J.T. Baker | 3818-01 | Buffer preparation |
Syringe filter 0.2 um | Millipore | GVWP04700 | Solution filtration |
Temed | Bio-Rad | 1610801 | SDS-PAGE |
Tris | Bio-Rad | 1610719 | SDS-PAGE |