Descrevemos protocolos para medir pH, eventos oxidativos e digestão de proteínas em macropinosos individuais em células vivas. Uma ênfase é colocada na microscopia metométrica de dupla fluorofora e nas vantagens que oferece sobre técnicas de base populacional.
Nos últimos anos, o campo da macropinocitose cresceu rapidamente. A macropinocistose emergiu como um mecanismo central pelo qual as células imunes inatas mantêm a homeostase e a imunidade do organismo. Simultaneamente, e ao contrário de seu papel homeostático, também pode conduzir várias patologias, incluindo câncer e infecções virais. Ao contrário de outros modos de endocitose, as ferramentas desenvolvidas para estudar a maturação de macropinossomos permanecem subdesenvolvidas. Aqui o protocolo descreve ferramentas recém-desenvolvidas para estudar o ambiente redox dentro do lúmen de macropinosos precoces e maduros. Metodologias para o uso de microscopia de fluorescência métrica ratiorada na avaliação do pH, produção de espécies reativas de oxigênio e a capacidade degradante dentro do lúmen de macropinosos individuais em células vivas são descritas. Medidas únicas de organela oferecem a vantagem de revelar a heterogeneidade espacial, que muitas vezes se perde com abordagens de base populacional. A ênfase é colocada nos princípios básicos da microscopia multiscopia multiscopia multiscopia fluoroforatométrica, incluindo seleção de sondas, instrumentação, calibração e métodos unicelulares versus populações.
Macropinocistose refere-se à absorção de grandes quantidades de fluido extracelular em organelas citoplasmáticas ligadas à membrana chamadas macropinossomos1,2. É um processo altamente conservado realizado por organismos unicelulares de vida livre, como a ameba Dictyostelium spp. 3, assim como anthozoans4 e metazoanos2. Na maioria das células, a macropinocitose é um evento induzido. A ligadura dos receptores de superfície celular induz a saliência de extensões de membrana plasmática movidas por actina, referidas como babados. Uma fração desses babados, por algum mecanismo mal compreendido, sela em suas pontas distais para formar macropinossomos (embora além do escopo deste artigo de métodos, para revisões detalhadas sobre a mecânica da macropinocitose, consulte as referências1,2,5,6,7). O estímulo extracelular que induz a macropinocitose é, na maioria dasvezes,um fator de crescimento solúvel5,8. Assim, o evento macropinocítico permite a ingestão de um bolus de material extracelular do qual a célula pode derivar metabólitos úteis para facilitar o crescimento. Infelizmente, esse caminho para o parto de nutrientes também pode impulsionar a patologia. Certas células cancerígenas abrigam mutações que resultam em macropinotose contínua ou constitutiva. A entrega contínua de nutrientes facilita a proliferação descontrolada de células cancerosas e tem sido associada a tumores particularmente agressivos9,10,11,12,13. Da mesma forma, os vírus podem induzir a macropinocitose a ter acesso às células hospedeiras, conduzindo assim a patologia viral14.
A macropinocistose também funciona na manutenção da imunidade aos patógenos. Certas células imunes inatas, como macrófagos e células dendríticas, envolvem-se na amostragem constitutiva e agressiva do fluido extracelular via macropinocistose6,15,16. Este modo de macropinocistose é incrivelmente ativo, e uma única célula dendrítica pode engorgar-se com um volume de fluido extracelular equivalente ao seu próprio peso a cada hora17. Apesar dessa amostragem constitutiva, macrófagos e células dendríticas não se replicam incontrolavelmente como as células tumorais, em vez disso, parecem processar o material extracelular de tal forma que as informações podem ser extraídas para informar sobre a presença, ou mesmo ausência, de ameaças potenciais. As informações são extraídas como i) padrões moleculares associados ao patógeno que podem ser lidos por receptores de reconhecimento de patógenos intracelulares e ii) pequenos trechos de aminoácidos que podem ser carregados em moléculas de histocompatibilidade principal para triagem por células do sistema imunológico adaptativo16,18,19. Não está claro se os patógenos subvertem esse caminho para o processamento de informações por células imunes.
Apesar desses papéis bem definidos e críticos para a macropinocistose tanto na manutenção da imunidade quanto na homeostase e em contraste com outros modos mais comumente estudados de endocitose, pouco dos trabalhos internos (luminosos) dos macropinossos são conhecidos. O desenvolvimento de protocolos e ferramentas padronizadas para estudar a bioquímica luminal dos macropinossos não só nos ajudará a entender melhor sua biologia única, mas fornecerá insights que podem ser aproveitados para novas estratégias terapêuticas, incluindo o fornecimento de medicamentos20. Este manuscrito metodu em ferramentas recentemente desenvolvidas para dissecar, no nível único da organela, vários aspectos da bioquímica luminal dos macropinossomos.
Fluoroforos podem ser usados para medir bioquímicas específicas de organelas se i) eles particionam preferencialmente no compartimento de interesse e/ou ii) sofrem alterações espectrais em resposta ao parâmetro de interesse. Por exemplo, no caso do pH, bases fracas fluorescentes, como laranja acridina, violeta cresyl, e os corantes LysoTracker se acumulam preferencialmente em organelas ácidas. Portanto, sua intensidade relativa é uma indicação aproximada de que a organela rotulada é ácida. Outros fluoroforos responsivos ao pH, como fluoresceína, pHrodo e cypHer5e, sofrem alterações espectrais ao se vincularem a prótons(Figura 1A–C). Alterações na emissão de fluorescência de fluoroforos sensíveis ao pH podem, portanto, fornecer uma aproximação útil do pH. O uso de fluoroforos únicos, no entanto, apresenta uma série de desvantagens. Por exemplo, alterações no plano focal, fotobleachamento e alterações no volume de organelas individuais, uma ocorrência comum em macropinosomos21,podem induzir alterações na intensidade de fluorescência de fluoroforos únicos, e isso não pode ser facilmente corrigido para22. As avaliações de comprimento de onda única, embora úteis para visualizar compartimentos ácidos, são, portanto, puramente qualitativas.
Uma abordagem mais quantitativa é atingir o fluoróforo sensível aos parâmetros, juntamente com um fluoróforo de referência à organela de interesse. O fluoróforo de referência é idealmente insensível às alterações bioquímicas dentro da organela (Figura 1D–F) e pode, portanto, ser usado para corrigir para alterações no plano focal, volume organellar e, em certa medida, fotobleaching23. Utilizando esta abordagem, referida como fluorescência multitorscência de fluorofora dupla, a correção pode ser alcançada gerando uma razão da emissão de fluorescência do fluorophore sensível aos parâmetros para o fluorophore de referência.
Aqui, o protocolo utilizará o princípio da imagem métrica de dupla fluorofora para medir pH, eventos oxidativos e degradação de proteínas dentro de macropinossos. Em cada caso, será selecionado um fluoróforo sensível ao parâmetro de interesse e a um fluoróforo de referência. Para direcionar os fluoroforos especificamente aos macropinossomos, eles serão covalentemente acoplados a 70 kDa dextran, que é preferencialmente incorporado em macropinossos24. Todos os ensaios serão realizados em células Raw264.7, mas podem ser adaptados a outros tipos de células. Sempre que possível, as razões de fluorescência serão calibradas em relação a uma curva de referência para ganhar valores absolutos. É importante ressaltar que todas as medições serão realizadas em células vivas para avaliação dinâmica e quantitativa do ambiente luminal dos macropinossomos.
Ao selecionar fluoroforos sensíveis ao pH, uma série de considerações devem ser ponderadas. O primeiro é o pKa do fluoróforo, que indica a faixa de valores de pH em que a sonda será mais sensível. Se for assumido que logo após a formação, o pH do macropinossomo estará próximo ao do meio extracelular (~pH 7.2) e que ele irá acidificar progressivamente através de interações com endósmos e lysosomos tardios (~pH 5.0), então uma sonda com um pKa sensível dentro dessa faixa(Figura 2C) deve ser selecionada. O fluoresceína fluorofora, que tem um pKa de 6.4, é otimizado dentro dessa faixa. Tem sido usado extensivamente para medir outras organelas semelhantes, como os faósmos, e será o fluoróforo de escolha neste manuscrito22,25. Como fluoróforo de referência, será utilizada a tetrametilrhodamina, que é insensível ao pH(Figura 1E). Outros fluoroforos, como pHrodo e cypHer5e podem ser substituídos por fluoresceína onde as propriedades espectrais da fluoresceína correspondem a outras variáveis experimentais. Alguns fluoroforos de referência sugeridos para pHrodo e cypHer5e são mostrados na Figura 1.
Uma segunda consideração é o método pelo qual os dois fluoroforos serão direcionados especificamente para macropinossomos. O Dextran do tamanho 70 kDa, que tem um raio hidrodinâmico de aproximadamente 7 nm, não gruda não especificamente nas células e é incorporado em macropinossos, mas não em poços revestidos de clathrin ou caveolae, e, portanto, marca macropinossos(Figura 2A e Figura 3A,B)16,24,26. Neste protocolo, o dextran de 70 kDa e tetramethylrhodamina (TMR) rotulados de 70 kDa dextran serão usados como sondas sensíveis ao pH e referência, respectivamente.
Nas células imunes inatas, macropinocistose e fagocitose representam as duas principais rotas para a internalização do material exógeno para processamento e posterior apresentação às células da resposta imune adaptativa27. O controle cuidadoso e coordenado da química redox do lúmen de fágoras e macropinossos é fundamental para o processamento específico do contexto do material exógeno. Talvez o regulador mais bem estudado de eventos oxidativos em fagosmos é o NADPH oxidase, um grande complexo multi-subunidade que produz grandes quantidades de espécies reativas de oxigênio (ROS) dentro do lúmen de fagosomes28. De fato, sua atividade é central para o processamento adequado de antígenos dentro dos fágoras29,30. No entanto, a atividade do NADPH oxidase em membranas macropinosômicas não foi explorada.
Neste protocolo, o éster de succinimidyl H2DCFDA é usado para medir eventos oxidativos dentro do macropinosome. Esta é uma forma modificada de fluoresceína (2′,7′-diclorodihioresceto), que é minimamente fluorescente em sua forma reduzida. Após a oxidação, sua emissão de fluorescência aumenta significativamente. No entanto, vale a pena notar uma ressalva significativa do H2DCFDA – como é baseada na fluoresceína fluorofora, sua fluorescência também é saciada em compartimentos ácidos, e deve-se tomar cuidado para controlar essa variável ao projetar experimentos28. Semelhante à abordagem para medir o pH, o éster succinimidil H2DCFDA será covalentemente anexado ao dextran de 70 kDa e o dextran de 70 kDa com rótulo TMR será usado como fluoróforo de referência(Figura 3A).
Ovalbumina fluorescente será usada para medir a degradação da proteína dentro de macropinossomos. O ovalbumin usado aqui é densamente rotulado com um corante FL 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fl que é auto-extinto. Após a digestão, peptídeos fortemente fluorescentes com tinta são liberados. Como o ovalbumin não pode ser facilmente conjugado a dextran de 70 kDa, as células com dextran de 70 kDa com tmr e ovalbumina de fase fluida serão co-incubadas. O sinal TMR será usado para gerar uma máscara macropinosa durante a análise pós-imagem, e o sinal liberado da ovalbumina digerida será medido dentro da máscara(Figura 3B).
Embora existam uma série de protocolos para medidas de baixo e alto rendimento de absorção macropinóctica em macrófagos, fibroblastos e até mesmo dictyostelium spp. 3,7,31,32,33, muito poucas tentativas foram feitas para medir a bioquímica luminal desses compartimentos dinâmicos. Isso é provavelmente devido a uma escassez de sondas que podem …
The authors have nothing to disclose.
Agradecemos à Universidade de Calgary pelo apoio. Também gostaríamos de agradecer ao Dr. Robin Yates pelo acesso a reagentes, equipamentos e discussões úteis.
Black-walled 96 well plate | PerkinElmer | 6005430 | |
CypHer5e, NHS ester | Cytiva | PA15401 | |
Dextran-amino 70 kDa | Invitrogen | D1862 | |
DQ-ovalbumin | Invitrogen | D12053 | |
FITC-dextran 70 kDa | Invitrogen | D1823 | |
HBSS | Gibco | 14287 | |
Nigericin | Sigma Aldrich | N7143 | |
OxyBurst Green-SE | Invitrogen | D2935 | |
pHrodo Red, SE | Invitrogen | P36600 | |
Raw264.7 cells | ATCC | TIB-71 | |
RPMI medium | Gibco | 11875093 | |
SP5 Confocal Microscope | Leica | – | |
TRITC-dextran 70 kDa | Invitrogen | D1819 | |
u-Dish | Ibidi | 81156 |