概要

小鼠模型中风:光血栓形成的焦皮质病变

Published: May 06, 2021
doi:

概要

这里描述的是光血栓中风模型,其中中风通过完整的头骨产生,在施用光敏染料后,使用激光照明诱导永久微血管闭塞。

Abstract

在发达国家,中风是导致死亡和成人残疾的主要原因。尽管对新的治疗策略进行了广泛的研究,但中风患者的治疗选择仍然有限。因此,需要对病理生理途径进行更多的研究,如中风后炎症、血管生成、神经元可塑性和再生。鉴于 体外 模型无法重现大脑的复杂性,实验性中风模型对于分析和随后评估这些机制的新药靶点至关重要。此外,迫切需要为克服所谓的复制危机而为所有程序制定详细的标准化模型。作为免疫冲程研究财团的一项努力,描述了一个标准化的光血栓小鼠模型,该模型使用玫瑰孟加拉的腹内注射和561纳米激光照亮完好的头骨。该模型允许在没有侵入性手术的情况下将中风的效果分配给大脑的任何皮质区域:因此,使中风的研究在大脑的各个区域。在本视频中,演示了光血栓模型中中风感应的手术方法以及理论分析。

Introduction

缺血性中风仍然是21世纪 发达国家的主要死因和成人残疾,2017年全球约有270万人死于缺血性中风。即使科学界作出巨大努力,也很少有治疗方法。此外,由于排除标准如此之高,许多患者无法获得这些已经有限的选择,因此迫切需要新的治疗方法来改善中风后的功能恢复。

考虑到 体外 模型无法复制大脑的复杂相互作用,动物模型对于临床前中风研究至关重要。老鼠是中风研究领域最常用的动物模型。这些小鼠模型大多旨在通过阻断中脑动脉(MCA)内的血流来诱导梗塞,因为大部分人类中风病变位于MCU区域2。虽然这些模型可以更好地回顾人类中风病变,但它们涉及高梗塞体积变异性的抽搐手术。

自从罗森布卢姆和艾尔-萨班于1977年提出光血栓模型3,后来该模型应用于老鼠沃森等人它已成为广泛应用于缺血性中风研究5,6。光血栓中风模型诱导局部和定义的皮质梗塞,由于以前注入血液中的光敏染料的光活化。这会导致暴露在光线下的船只局部血栓。简言之,在接触注射光敏染料的光线后,诱发内皮细胞膜局部氧化损伤,导致血小板聚集和血栓形成,随后局部扰乱脑血流7。

这种技术的主要优点在于其执行的简单性和将病变引向所需区域的可能性。与其他实验性中风模型不同,执行光血栓中风模型需要少量的手术专业知识,因为病变是通过对完整头骨的照明诱导的。此外,划定良好的边界(图2A图5B)和灵活性诱导病变到特定的大脑区域,可以促进研究细胞反应内缺血或完整的皮质区域8。由于这些原因,这种方法适用于皮质可塑性细胞和分子机制的研究。

在过去几十年中,人们越来越担心研究小组之间缺乏可复制性,这引发了所谓的复制危机在2015年10月协调了第一个临床前随机对照多中心试验研究后,一个改进临床前研究的拟议工具11、12、13被证实,独立实验室临床前研究不重复的一个原因是实验性中风模型和结果参数缺乏足够的标准化。因此,当免疫中风联合体成立(https://immunostroke.de/)时,一个旨在了解中风恢复机械原理背后的大脑免疫相互作用的合作,每个研究小组中所有实验性中风模型的标准化至关重要。

这里描述的是上述研究联合体中使用的光血栓模型诱导的标准化程序。简言之,一只动物接受了麻醉,在腹内接受了玫瑰孟加拉注射(10μL/g),从布雷格玛留下的3毫米完整的头骨立即被561纳米激光照亮20分钟(图1)。此外,还报告了分析此模型中风结果的相关理论和行为方法。所有方法都基于实验室制定和使用的标准操作程序。

Protocol

本视频中报道的实验是根据使用实验动物的国家准则进行的,这些议定书得到了德国政府委员会的批准(德国慕尼黑,雷吉龙·冯·奥伯巴耶恩)。这项研究中使用的老鼠是雄性C57Bl/6J小鼠,10-12周大,由德国查尔斯河公司派遣。这些动物被安置在受控温度(22°C±2°C)下,周期为12小时,可获得颗粒食物和水 。 1. 材料和仪器的准备工作 溶解玫瑰孟加拉在0.9%盐水?…

Representative Results

此处描述的模型是玫瑰孟加拉注射的光血栓冲程模型,完整的头骨照明为 20 分钟,在光纤上恒定的 561 nm 波长和 25 mW 输出功率。虽然完整的光栓手术持续30分钟,但动物保持在低麻醉下,脑损伤适中。大约10分钟后,转移到他们的笼子,所有的动物都醒了,在笼子里自由移动,并与垃圾伙伴互动。 在中风诱导后24小时使用青紫罗兰色染色连续冠脑部分(图2A)</…

Discussion

提交的协议描述了光血栓形成的实验性中风模型,用561纳米激光照亮完好的头骨,并进行了玫瑰孟加拉的腹内注射。直到最近,这种模式的使用一直很低,但正在稳步增加。

此模型中中风诱导期间的死亡率不存在。手术过程中,由于麻醉并发症或在符合排除标准后做出牺牲,总死亡率低于5%。为保证该模型的低变异性和可重复性,建议以下排除标准:1) 操作时间超过 30 分钟…

開示

The authors have nothing to disclose.

Acknowledgements

我们感谢免疫中风联盟(FOR 2879,从免疫细胞到中风恢复)的所有合作伙伴的建议和讨论。这项工作由德国福松斯格梅因沙夫特(DFG,德国研究基金会)在德国系统神经学集群(EXC 2145 SyNergy – ID 390857198)框架内的卓越战略下,以及根据LI-2534/6-1、LI-2534/7-1和LL-112/1-1的赠款资助。

Materials

561 nm wavelenght laser Solna Cobolt HS-03
Acetic Acid Sigma Life Science 695092
Anesthesia system for isoflurane Drager
ApopTag Peroxidase In Situ Apoptosis Detection Kit Millipore S7100
Bepanthen pomade Bayer 1578681
C57Bl/6J mice Charles River 000664
Collimeter Thorlabs F240APC-A
Cotons NOBA Verbondmitel Danz 974116
Cresyl violet Sigma Life Science C5042-10G
Cryostat Thermo Scientific CryoStarNX70
Ethanol 70% CLN Chemikalien Laborbedorf 521005
Ethanol 96% CLN Chemikalien Laborbedorf 522078
Ethanol 99% CLN Chemikalien Laborbedorf ETO-5000-99-1
Filter paper Macherey-Nagel 432018
Fine Scissors FST 15000-00
Forceps FST 11616-15
Heating blanket FHC DC Temperature Controller  40-90-8D
Isoflurane Abbot B506
Isopentane Fluka 59070
Ketamine Inresa Arzneimittel GmbH
Laser Speckle Perimed PeriCam PSI HR
Mayor Scissors FST 1410-15
Phosphate Buffered Saline PH: 7.4 Apotheke Innestadt Uni Munchen P32799
Protective glasses Laser 2000 NIR-ZS2-38
Rose Bengal Sigma Aldrich 198250-5G
Roti-Histokit mounting medium Roth 6638.1
Saline solution Braun 131321
Stereomikroskop Zeiss Stemi DV4
Stereotactic frame Stoelting 51500U
Superfrost Plus Slides Thermo Scientific J1800AMNZ
Xylacine Albrecht

参考文献

  1. GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 390 (10100), 1151-1210 (2017).
  2. Carmichael, S. T. Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx: The Journal of the American Society for Experimental Neuro Therapeutics. 2 (3), 396-409 (2005).
  3. Rosenblum, W. I., El-Sabban, F. Platelet aggregation in the cerebral microcirculation: effect of aspirin and other agents. Circulation Research. 40 (3), 320-328 (1977).
  4. Watson, B. D., Dietrich, W. D., Busto, R., Wachtel, M. S., Ginsberg, M. D. Induction of reproducible brain infarction by photochemically initiated thrombosis. Annals of Neurology. 17 (5), 497-504 (1985).
  5. Bergeron, M. Inducing photochemical cortical lesions in rat brain. Current Protocols in Neuroscience. , (2003).
  6. Lee, J. K., et al. Photochemically induced cerebral ischemia in a mouse model. Surgical Neurology. 67 (6), 620-625 (2007).
  7. Dietrich, W. D., Watson, B. D., Busto, R., Ginsberg, M. D., Bethea, J. R. Photochemically induced cerebral infarction. I. Early microvascular alterations. Acta Neuropathologica. 72 (4), 315-325 (1987).
  8. Labat-gest, V., Tomasi, S. Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. Journal of Visualized Experiments: JoVE. (76), e50370 (2013).
  9. McNutt, M. Journals unite for reproducibility. Science. 346 (6210), 679 (2014).
  10. Llovera, G., et al. Results of a preclinical randomized controlled multicenter trial (pRCT): Anti-CD49d treatment for acute brain ischemia. Science Translational Medicine. 7 (299), (2015).
  11. Dirnagl, U., et al. A concerted appeal for international cooperation in preclinical stroke research. Stroke. 44 (6), 1754-1760 (2013).
  12. Bath, P. M., Macleod, M. R., Green, A. R. Emulating multicentre clinical stroke trials: a new paradigm for studying novel interventions in experimental models of stroke. International Journal of Stroke: Official Journal of the INternational Stroke Society. 4 (6), 471-479 (2009).
  13. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., Altman, D. G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. Journal of Pharmacology & Pharmacotherapeutics. 1 (2), 94-99 (2010).
  14. Llovera, G., Liesz, A. The next step in translational research: lessons learned from the first preclinical randomized controlled trial. Journal of Neurochemistry. 139, 271-279 (2016).
  15. Gnyawali, S. C., et al. Retooling laser speckle contrast analysis algorithm to enhance non-invasive high resolution laser speckle functional imaging of cutaneous microcirculation. Scientific Reports. 7, 41048 (2017).
  16. Swanson, G. M., Satariano, E. R., Satariano, W. A., Threatt, B. A. Racial differences in the early detection of breast cancer in metropolitan Detroit, 1978 to 1987. Cancer. 66 (6), 1297-1301 (1990).
  17. Clark, W. M., Lessov, N. S., Dixon, M. P., Eckenstein, F. Monofilament intraluminal middle cerebral artery occlusion in the mouse. Neurological Research. 19 (6), 641-648 (1997).
  18. Longa, E. Z., Weinstein, P. R., Carlson, S., Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 20 (1), 84-91 (1989).
  19. Engel, O., Kolodziej, S., Dirnagl, U., Prinz, V. Modeling stroke in mice – middle cerebral artery occlusion with the filament model. Journal of Visualized Experiments: JoVE. (47), e2423 (2011).
  20. Tamura, A., Graham, D. I., McCulloch, J., Teasdale, G. M. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism. 1 (1), 53-60 (1981).
  21. Chen, S. T., Hsu, C. Y., Hogan, E. L., Maricq, H., Balentine, J. D. A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke. 17 (4), 738-743 (1986).
  22. Tureyen, K., Vemuganti, R., Sailor, K. A., Dempsey, R. J. Infarct volume quantification in mouse focal cerebral ischemia: a comparison of triphenyltetrazolium chloride and cresyl violet staining techniques. Journal of Neuroscience Methods. 139 (2), 203-207 (2004).
  23. Llovera, G., Roth, S., Plesnila, N., Veltkamp, R., Liesz, A. Modeling stroke in mice: permanent coagulation of the distal middle cerebral artery. Journal of Visualized Experiments: JoVE. (89), e511729 (2014).
  24. Cramer, J. V., et al. In vivo widefield calcium imaging of the mouse cortex for analysis of network connectivity in health and brain disease. Neuroimage. 199, 570-584 (2019).
  25. Heindl, S., et al. Automated morphological analysis of microglia after stroke. Frontiers in Cellular Neuroscience. 12, 106 (2018).
  26. Nih, L. R., Gojgini, S., Carmichael, S. T., Segura, T. Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nature Materials. 17 (7), 642-651 (2018).
  27. Rust, R., et al. Nogo-A targeted therapy promotes vascular repair and functional recovery following stroke. Proceedings of the National Academy of Sciences of the United States of America. 116 (28), 14270-14279 (2019).
  28. Kitano, H., Kirsch, J. R., Hurn, P. D., Murphy, S. J. Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism. 27 (6), 1108-1128 (2007).
  29. Farr, T. D., Whishaw, I. Q. Quantitative and qualitative impairments in skilled reaching in the mouse (Mus musculus) after a focal motor cortex stroke. Stroke. 33 (7), 1869-1875 (2002).
  30. Kassem-Moussa, H., Graffagnino, C. Nonocclusion and spontaneous recanalization rates in acute ischemic stroke: a review of cerebral angiography studies. Archives of Neurology. 59 (12), 1870-1873 (2002).
  31. Sigler, A., Goroshkov, A., Murphy, T. H. Hardware and methodology for targeting single brain arterioles for photothrombotic stroke on an upright microscope. Journal of Neuroscience Methods. 170 (1), 35-44 (2008).

Play Video

記事を引用
Llovera, G., Pinkham, K., Liesz, A. Modeling Stroke in Mice: Focal Cortical Lesions by Photothrombosis. J. Vis. Exp. (171), e62536, doi:10.3791/62536 (2021).

View Video