概要

Culturing Rat Sympathetic Neurons from Embryonic Superior Cervical Ganglia for Morphological and Proteomic Analysis

Published: September 27, 2020
doi:

概要

This paper describes the isolation and culturing of embryonic rat sympathetic neurons from the superior cervical ganglia. It also provides detailed protocols for immunocytochemical staining and for preparing neuronal extracts for mass spectrometric analysis.

Abstract

Sympathetic neurons from the embryonic rat superior cervical ganglia (SCG) have been used as an in vitro model system for peripheral neurons to study axonal growth, axonal trafficking, synaptogenesis, dendritic growth, dendritic plasticity and nerve-target interactions in co-culture systems. This protocol describes the isolation and dissociation of neurons from the superior cervical ganglia of E21 rat embryos, followed by the preparation and maintenance of pure neuronal cultures in serum-free medium. Since neurons do not adhere to uncoated plastic, neurons will be cultured on either 12 mm glass coverslips or 6-well plates coated with poly-D-lysine. Following treatment with an antimitotic agent (Ara-C, cytosine β-D-arabinofuranoside), this protocol generates healthy neuronal cultures with less than 5% non-neuronal cells, which can be maintained for over a month in vitro. Although embryonic rat SCG neurons are multipolar with 5-8 dendrites in vivo; under serum-free conditions, these neurons extend only a single axon in culture and continue to be unipolar for the duration of the culture. However, these neurons can be induced to extend dendrites in the presence of basement membrane extract, bone morphogenetic proteins (BMPs), or 10% fetal calf serum. These homogenous neuronal cultures can be used for immunocytochemical staining and for biochemical studies. This paper also describes optimized protocol for immunocytochemical staining for microtubule associated protein-2 (MAP-2) in these neurons and for the preparation of neuronal extracts for mass spectrometry.

Introduction

Sympathetic neurons derived from embryonic superior cervical ganglia (SCG) have been widely used as a primary neuronal culture system for studying many aspects of neuronal development including growth factor dependence, neuron-target interactions, neurotransmitter signaling, axonal growth, dendrite development and plasticity, synaptogenesis and signaling mechanisms underlying nerve-target/neuron-glia interactions1,2,3,4,5,6,7,8,9. Despite their small size (around 10000 neurons/ganglia), there are three main reasons for the development and extensive use of this culture system are i) being the first ganglia in the sympathetic chain, they are larger, and therefore easier to isolate, than the rest of the sympathetic ganglia10; ii) unlike central neurons, the neurons in the SCG are fairly homogeneous with all the neurons being derived from the neural crest, having a similar size, dependence on nerve growth factor and being nor-adrenergic. This makes them a valuable model for morphological and genomic studies10,11 and iii) these neurons can be maintained in a defined serum-free medium containing nerve growth factor for over a month10,12. Perinatal SCG neurons have been extensively used for studying the mechanisms underlying the initiation and maintenance of dendrites2. This is mainly because, although SCG neurons have an extensive dendritic arbor in vivo, they do not extend dendrites in vitro in the absence of serum but can be induced to grow dendrites in the presence of certain growth factors such as bone morphogenetic proteins2,12,13.

This paper describes the protocol for isolating and culturing embryonic rat SCG neurons. Over the past 50 years, primary neuronal cultures from the SCG have been mainly used for morphological studies with a limited number of studies examining the large-scale genomic or proteomic changes. This is mainly due to small tissue size resulting in the isolation of low amounts of DNA or protein, which makes it difficult to perform genomic and proteomic analyses on these neurons. However, in recent years, increased detection sensitivity has enabled development of methods to examine the genome, miRNome and proteome in the SCG neurons during dendritic growth development14,15,16,17. This paper will also describe the method for morphological analysis of these neurons using immunocytochemistry and a protocol to obtain neuronal protein extracts for mass spectrometric analysis.

Protocol

All procedures performed in studies involving animals were approved by the Institutional Animal Care and Use Committee (IACUC) at Saint Mary’s College of California. The animal care and use guidelines at Saint Mary’s College were developed based on the guidelines provided by Office of Laboratory Animal Welfare at the National Institute for Health (https://olaw.nih.gov/sites/default/files/PHSPolicyLabAnimals.pdf and https://olaw.nih.gov/sites/default/files/Guide-for-the-Care-and-Use-of-Laboratory-Animals.pdf)….

Representative Results

Isolating and maintaining neuronal cultures of embryonic SCG neurons Dissociated cells from the rat embryonic SCG were plated in a poly-D-lysine coated plate or coverslip and maintained in serum free culture media containing b-nerve growth factor. The dissociated cells containing a mixture of neurons and glial cells look circular upon plating (Figure 1A). Within 24 hours of plating, the neurons extend small axonal processes with glial cells flattening and appearing pha…

Discussion

This paper describes the protocols for culturing sympathetic neurons from superior cervical ganglia of embryonic rat pups. The advantages of using this model system are that it is possible to obtain a homogeneous population of neurons providing a similar response to growth factors, and since the growth factor requirements for these neurons has been well -characterized, it is possible to grow these neurons in vitro in defined media, under serum-free conditions10. Although the protocol describes the…

開示

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Faculty Development Fund and Summer Research Program grant at Saint Mary’s College of California. The authors would also like to thank Dr. Pamela Lein at University of California at Davis and Dr. Anthony Iavarone at UC Berkeley Mass spectrometry facility for their advice during the development of these protocols. The authors would also like to thank Haley Nelson in the Office of College Communications at Saint Mary’s College of California for her help with video production and editing.

Materials

2D nanoACQUITY Waters Corporation
Ammonium bicarbonate Sigma-Aldrich 9830
BMP-7 R&D Systems 354-BP
Bovine Serum Alumin Sigma-Aldrich 5470
Cell scraper Corning CLS-3010
Collagenase Worthington Biochemical 4176
Corning Costar or Nunc Flat bottomed Cell culture plates Fisher Scientific 07-200, 140675, 142475
Cytosine- β- D-arabinofuranoside Sigma-Aldrich C1768
D-phosphate buffered saline (Calcium and magnesium free) ATCC 30-2200
Dispase II Roche 4942078001
Distilled Water Thermo Fisher Scientific 15230
Dithiothreitol Sigma-Aldrich D0632
DMEM – Low glucose + Glutamine, + sodium pyruvate Thermo Fisher Scientific 11885
Fatty Acid Free BSA Calbiochem 126609 20 mg/mL stock in low glucose DMEM
Fine forceps Dumont no.4 and no.5 Ted Pella Inc 5621, 5622
Forceps and Scissors for Dissection Ted Pella Inc 1328, 1329, 5002
Glass coverlips – 12mm Neuvitro Corporation GG-12
Goat-Anti Mouse IgG Alexa 488 conjugated Thermo Fisher Scientific A32723
Ham's F-12 Nutrient Mix Thermo Fisher Scientific 11765
Hank's balanced salt soltion (Calcium and Magnesium free) Thermo Fisher Scientific 14185
Insulin-Selenium-Transferrin (100X) Thermo Fisher Scientific 41400-045
Iodoacetamide Sigma-Aldrich A3221
L-Glutamine Thermo Fisher Scientific 25030
Leibovitz L-15 medium Thermo Fisher Scientific 11415064
Mounting media for glass coverslips Thermo Fisher Scientific P36931, P36934
Mouse-anti- MAP2 antibody (SMI-52) BioLegend SMI 52
Nerve growth factor Envigo Bioproducts (formerly Harlan Bioproducts) BT5017 Stock 125 μg/mL in 0.2% Prionex in DMEM
Paraformaldehye Spectrum Chemicals P1010
Penicillin-Streptomycin (100X) Thermo Fisher Scientific 15140
Poly-D-Lysine Sigma-Aldrich P0899
Prionex Millipore 529600 10% solution, 100 mL
RapiGest SF Waters Corporation 186001861 5 X 1 mg
Synapt G2 High Definition Mass Spectrometry Waters Corporation
Trifluoro acetic acid – Sequencing grade Thermo Fisher Scientific 28904 10 X 1 mL
Triton X-100 Sigma-Aldrich X100
Trypsin Promega or NEB V511A, P8101S 100 μg or 5 X 20 mg
Waters Total recovery vials Waters Corporation 186000385c

参考文献

  1. Rees, R. P., Bunge, M. B., Bunge, R. P. Morphological Changes in the neuritic growth cone and target neuron during synaptic junction development in culture. Journal of Cell Biology. 9, (1976).
  2. Chandrasekaran, V., Lein, P. J. Regulation of Dendritogenesis in Sympathetic Neurons. Autonomic Nervous System. , (2018).
  3. Higgins, D., Burack, M., Lein, P., Banker, G. Mechanisms of neuronal polarity. Current Opinion in Neurobiology. 7 (5), 599-604 (1997).
  4. Lein, P., Guo, X., Hedges, A. M., Rueger, D., Johnson, M., Higgins, D. The effects of Extracellular Matrix And Osteogenic Protein-1 on the morphological differentiation of rat sympathetic neurons. International Journal of Developmental Neuroscience. 14 (3), 203-215 (1996).
  5. Kobayashi, M., Fujii, M., Kurihara, K., Matsuoka, I. Bone morphogenetic protein-2 and retinoic acid induce neurotrophin-3 responsiveness in developing rat sympathetic neurons. Molecular Brain Research. 53 (1-2), 206-217 (1998).
  6. Burnham, P., Louis, J. C., Magal, E., Varon, S. Effects of ciliary neurotrophic factor on the survival and response to nerve growth factor of cultured rat sympathetic neurons. 発生生物学. 161 (1), 96-106 (1994).
  7. Hou, X. E., Li, J. Y., Dahlström, A. Clathrin light chain and synaptotagmin I in rat sympathetic neurons. Journal of the Autonomic Nervous System. 62 (1-2), 13-26 (1997).
  8. Harris, G. M., et al. Nerve Guidance by a Decellularized Fibroblast Extracellular Matrix. Matrix Biology. , 176-189 (2017).
  9. Wingerd, K. L., et al. α4 integrins and vascular cell adhesion molecule-1 play a role in sympathetic innervation of the heart. Journal of Neuroscience. 22 (24), 10772-10780 (2002).
  10. Higgins, D., Lein, P., Osterhout, D. J., Johnson, M., Banker, G., Goslin, K. Tissue culture of autonomic neurons. Culturing Nerve Cells. , 177-205 (1991).
  11. Lein, P., Johnson, M., Guo, X., Rueger, D., Higgins, D. Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons. Neuron. 15 (3), 597-605 (1995).
  12. Bruckenstein, D. A., Higgins, D. Morphological differentiation of embryonic rat sympathetic neurons in tissue culture. 発生生物学. 128 (2), 337-348 (1988).
  13. Voyvodic, J. T. Development and regulation of dendrites in the rat superior cervical ganglion. The Journal of Neuroscience. 7 (3), 904-912 (1987).
  14. Garred, M. M., Wang, M. M., Guo, X., Harrington, C. A., Lein, P. J. Transcriptional Responses of Cultured Rat Sympathetic Neurons during BMP-7-Induced Dendritic Growth. PLoS ONE. 6 (7), 21754 (2011).
  15. Pravoverov, K., et al. MicroRNAs are Necessary for BMP-7-induced Dendritic Growth in Cultured Rat Sympathetic Neurons. Cellular and Molecular Neurobiology. 39 (7), 917-934 (2019).
  16. Natera-Naranjo, O., Aschrafi, A., Gioio, A. E., Kaplan, B. B. Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons. RNA (New York, N.Y.). 16 (8), 1516-1529 (2010).
  17. Aschrafi, A., et al. Angiotensin II mediates the axonal trafficking of tyrosine hydroxylase and dopamine β-hydroxylase mRNAs and enhances norepinephrine synthesis in primary sympathetic neurons. Journal of Neurochemistry. 150 (6), 666-677 (2019).
  18. Ghogha, A., Bruun, D. a., Lein, P. J. Inducing dendritic growth in cultured sympathetic neurons. Journal of Visualized Experiments. (61), 4-8 (2012).
  19. Caceres, A., Banker, G., Steward, O., Binder, L., Payne, M. MAP2 is localized to the dendrites of hippocampal neurons which develop in culture. Brain Research. 315 (2), 314-318 (1984).
  20. Guo, X., Rueger, D., Higgins, D. Osteogenic protein-1 and related bone morphogenetic proteins regulate dendritic growth and the expression of microtubule-associated protein-2 in rat sympathetic neurons. Neuroscience Letters. 245 (3), 131-134 (1998).
  21. Mi, H., et al. PANTHER version 11: Expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Research. 45, 183-189 (2017).
  22. Chandrasekaran, V., et al. Retinoic acid regulates the morphological development of sympathetic neurons. Journal of Neurobiology. 42 (4), (2000).
  23. Courter, L. A., et al. BMP7-induced dendritic growth in sympathetic neurons requires p75 NTR signaling. Developmental Neurobiology. 76 (9), 1003-1013 (2016).
  24. Lein, P. J., Fryer, A. D., Higgins, D. Cell Culture: Autonomic and Enteric Neurons. Encyclopedia of Neuroscience. , 625-632 (2009).
  25. Neto, E., et al. Compartmentalized Microfluidic Platforms: The Unrivaled Breakthrough of In vitro Tools for Neurobiological Research. Journal of Neuroscience. 36 (46), 11573-11584 (2016).
  26. Sleigh, J. N., Weir, G. A., Schiavo, G. A simple, step-by-step dissection protocol for the rapid isolation of mouse dorsal root ganglia. BMC Research Notes. 9 (1), 82 (2016).
  27. Conrad, R., Jablonka, S., Sczepan, T., Sendtner, M., Wiese, S., Klausmeyer, A. Lectin-based isolation and culture of mouse embryonic motoneurons. Journal of Visualized Experiments. (55), e3200 (2011).
  28. Takeuchi, A., et al. Microfabricated device for co-culture of sympathetic neuron and iPS-derived cardiomyocytes. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. 2013, 3817-3820 (2013).
  29. Takeuchi, A., et al. Development of semi-separated co-culture system of sympathetic neuron and cardiomyocyte. Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009. , 1832-1835 (2009).
  30. Chandrasekaran, V., Lea, C., Sosa, J. C., Higgins, D., Lein, P. J. Reactive oxygen species are involved in BMP-induced dendritic growth in cultured rat sympathetic neurons. Molecular and Cellular Neuroscience. 67, (2015).
  31. Kim, W. Y., et al. Statins decrease dendritic arborization in rat sympathetic neurons by blocking RhoA activation. Journal of Neurochemistry. 108 (4), 1057-1071 (2009).
  32. Dalby, B., et al. Advanced transfection with Lipofectamine 2000 reagent: Primary neurons, siRNA, and high-throughput applications. Methods. 33 (2), 95-103 (2004).
  33. Szpara, M. L., et al. Analysis of gene expression during neurite outgrowth and regeneration. BMC Neuroscience. 8 (1), 100 (2007).
  34. Pop, C., Mogosan, C., Loghin, F. Evaluation of rapigest efficacy for the digestion of proteins from cell cultures and heart tissue. Clujul Medical. 87 (4), 5 (2014).
  35. Vit, O., Petrak, J. Integral membrane proteins in proteomics. How to break open the black box. Journal of Proteomics. 153, 8-20 (2017).

Play Video

記事を引用
Holt, M., Adams, B., Chandrasekaran, V. Culturing Rat Sympathetic Neurons from Embryonic Superior Cervical Ganglia for Morphological and Proteomic Analysis. J. Vis. Exp. (163), e61283, doi:10.3791/61283 (2020).

View Video