Dieser Artikel beschreibt ein Schritt-für-Schritt-Protokoll zur Einrichtung eines Ex-vivo-Schweinemodells der bakteriellen Keratitis. Pseudomonas aeruginosa wird als prototypischer Organismus verwendet. Dieses innovative Modell imitiert in vivo-Infektionen, da die bakterielle Proliferation von der Fähigkeit des Bakteriums abhängt, Hornhautgewebe zu schädigen.
Bei der Entwicklung neuartiger antimikrobieller Wirkstoffe hängt der Erfolg von Tierversuchen von einer genauen Extrapolation der antimikrobiellen Wirksamkeit von In-vitro-Tests bis hin zu Tierinfektionen in vivo ab. Die bestehenden In-vitro-Tests überschätzen in der Regel die antimikrobielle Wirksamkeit, da das Vorhandensein von Wirtsgewebe als Diffusionsbarriere nicht berücksichtigt wird. Um diesen Engpass zu überwinden, haben wir ein ex vivo Porcine Corneal Modell der bakteriellen Keratitis unter Verwendung von Pseudomonas aeruginosa als prototypischem Organismus entwickelt. Dieser Artikel beschreibt die Vorbereitung der Schweinehornhaut und Protokoll für die Einrichtung der Infektion. Maßgeschneiderte Glasformen ermöglichen eine einfache Einrichtung der Hornhaut für Infektionsstudien. Das Modell imitiert in vivo-Infektion, da die bakterielle Proliferation von der Fähigkeit des Bakteriums abhängt, Hornhautgewebe zu schädigen. Die Etablierung einer Infektion wird als eine Zunahme der Anzahl der Kolonie bildenden Einheiten überprüft, die über lebensfähige Plattenzählungen bewertet werden. Die Ergebnisse zeigen, dass eine Infektion in den ex vivo Hornhäuten mit der hier beschriebenen Methode sehr reproduzierbar nachgewiesen werden kann. Das Modell kann in Zukunft erweitert werden, um Keratitis zu imitieren, die durch andere Mikroorganismen als P. aeruginosaverursacht wird. Das Endziel des Modells besteht darin, die Wirkung der antimikrobiellen Chemotherapie auf den Fortschritt einer bakteriellen Infektion in einem Szenario zu untersuchen, das repräsentativer für In-vivo-Infektionen ist. Auf diese Weise wird das hier beschriebene Modell den Einsatz von Tieren zu Testzwecken reduzieren, die Erfolgsraten in klinischen Studien verbessern und letztlich eine schnelle Übersetzung neuartiger antimikrobiellen Mittel in die Klinik ermöglichen.
Hornhautinfektionen sind wichtige Ursachen für Erblindung und treten in epidemischen Ausmaßen in Ländern mit niedrigem und mittlerem Einkommen auf. Die Ätiologie der Krankheit variiert von Region zu Region, aber Bakterien machen die steile Mehrheit dieser Fälle aus. Pseudomonas aeruginosa ist ein wichtiger Erreger, der eine schnell fortschreitende Krankheit verursacht. In vielen Fällen, Patienten mit stromalen Narben, unregelmäßigen Astigmatismus links, erfordern Transplantation oder im schlimmsten Fall, verlieren ein Auge1,2.
Bakterielle Keratitis verursacht durch P. aeruginosa ist eine schwierige Augeninfektion zu behandeln, vor allem aufgrund der zunehmenden Entstehung von antimikrobiellen resistenten Stämmen von P. aeruginosa. Innerhalb des letzten Jahrzehnts hat sich gezeigt, dass das Testen und Entwickeln neuer Behandlungen für Hornhautinfektionen im Allgemeinen und solche, die durch Pseudomonas sp. verursacht werden, im Besonderen unerlässlich ist, um den aktuellen Trend der Antibiotikaresistenz zu bekämpfen3.
Für die Prüfung der Wirksamkeit neuer Behandlungen von Hornhautinfektionen sind konventionelle mikrobiologische In-vitro-Methoden aufgrund des Unterschieds in der bakteriellen Physiologie während der Laborkultur und bei Infektionen in vivo sowie aufgrund des Fehlens der Wirtsschnittstelle4,5ein schlechtes Ersatzzeichen. In-vivo-Tiermodelle sind jedoch teuer, zeitaufwändig, können nur eine kleine Anzahl von Repliken liefern und Bedenken hinsichtlich des Tierschutzes aufkommen lassen.
In diesem Artikel zeigen wir ein einfaches und reproduzierbares organotypisches Ex-vivo-Schweinemodell der Keratitis, das verwendet werden kann, um verschiedene Behandlungen auf akute und chronische Infektionen zu testen. Wir haben P. aeruginosa für dieses Experiment verwendet, aber das Modell funktioniert auch gut mit anderen Bakterien und Organismen wie Pilzen und Hefe, die Keratitis verursachen.
Der Haupttreiber für die Entwicklung dieses Keratitismodells unter Verwendung von Ex-vivo-Schweinehornhaut besteht darin, Forschern, die neuartige antimikrobielle Mittel entwickeln, ein repräsentatives In-vitro-Modell zur genaueren Bestimmung der antimikrobiellen Wirksamkeit in den präklinischen Stadien zur Verfügung zu stellen. Dies wird Forschern, die an der Entwicklung neuer antimikrobiellen Mittel beteiligt sind, eine bessere Kontrolle über das Arzneimitteldesign und die Rezeptur in den präklinischen Stadien bi…
The authors have nothing to disclose.
Die Autoren danken Elliot Abattoir in Chesterfield für die Bereitstellung von Schweineaugen. Die Glasringe wurden nach unserem Design von dem Glasbläser Dan Jackson vom Department of Chemistry der University of Sheffield hergestellt. Die Autoren danken dem Medical Research Council (MR/S004688/1) für die Finanzierung. Die Autoren danken auch Frau Shanali Dikwella für die technische Hilfe bei der Hornhautzubereitung. Die Autoren danken Herrn Jonathan Emery für die Hilfe bei der Formatierung von Bildern.
50 mL Falcon tube | SLS | 352070 | |
Amphotericin B | Sigma | A2942 | |
Cellstar 12 well plate | Greiner Bio-One | 665180 | |
Dextran | Sigma | 31425-100mg-F | |
Distel | Fisher Scientific | 12899357 | |
DMEM + glutamax | SLS | D0819 | |
Dual Oven Incubator | SLS | OVe1020 | Sterilising oven |
Epidermal growth factor | SLS | E5036-200UG | |
F12 HAM | Sigma | N4888 | |
Foetal calf serum | Labtech International | CA-115/500 | |
Forceps | Fisher Scientific | 15307805 | |
Handheld homogeniser 220 | Fisher Scientific | 15575809 | Homogeniser |
Heracell VIOS 160i | Thermo Scientific | 15373212 | Tissue culture incubator |
Heraeus Megafuge 16R | VWR | 521-2242 | Centrifuge |
Insulin, recombinant Human | SLS | 91077C-1G | |
LB agar | Sigma | L2897 | |
Multitron | Infors | Not appplicable | Bacterial incubator |
PBS | SLS | P4417 | |
Penicillin-Streptomycin | SLS | P0781 | |
Petri dish | Fisher Scientific | 12664785 | |
Petri dish 35x10mm CytoOne | Starlab | CC7672-3340 | |
Povidone iodine | Weldricks pharmacy | 2122828 | |
Safe 2020 | Fisher Scientific | 1284804 | Class II microbiology safety cabinet |
Scalpel blade number 15 | Fisher Scientific | O305 | |
Scalpel Swann Morton | Fisher Scientific | 11849002 |