概要

用于调节人类供体后段眼内压和颅内压的跨层自主系统模型

Published: April 24, 2020
doi:

概要

我们描述并详细介绍了跨层自治系统的使用。该系统利用人后段独立调节节段(眼内)内和视神经周围(颅内)的压力,以产生模仿青光眼性视神经病变特征的跨层压力梯度。

Abstract

目前对一种新的临床前人类模型的需求尚未得到满足,该模型可以使用颅内压(ICP)和眼内压(IOP)靶向离体疾病病因,该模型可以识别与青光眼发病机制相关的各种致病范式。离体人前段灌注器官培养模型先前已被成功利用并作为青光眼发病机制发现和治疗测试的有效技术。在离体人体器官系统上进行的临床前药物筛选和研究可以更好地转化为临床研究。本文详细介绍了一种称为跨层自主系统(TAS)的新型离体人跨层压力模型的生成和操作。TAS模型可以使用人类供体后段独立调节ICP和IOP。该模型允许以临床前方式研究发病机制。它可以减少活体动物在眼科研究中的使用。与体外实验模型相比,视神经头(ONH)组织结构,复杂性和完整性也可以在离体TAS模型中保持。

Introduction

最近调查的全球估计表明,有2.85亿人患有视力障碍,其中包括3900万盲人1。2010 年,世界卫生组织记录发现,列出的九个主要失明原因中有三个发生在眼睛后段1。眼后段疾病累及视网膜、脉络膜和视神经2。视网膜和视神经是大脑的中枢神经系统(CNS)延伸。视网膜神经节细胞(RGC)轴突容易受到损伤,因为它们通过视神经头(ONH)离开眼睛形成视神经3。ONH仍然是RGC轴突最脆弱的点,因为结缔组织束的3D网格作用称为层状(LC)4。ONH是青光眼中RGC轴突损伤的初始部位567,并且ONH内的基因表达变化已经在眼部高血压和青光眼模型中进行了研究8910。由于眼内隔室(称为眼内压 (IOP))和外眼周蛛网膜腔内(称为颅内压 (ICP))之间的压差,RGC 轴突在 ONH 处易感11。LC区域将两个区域分开,保持正常的压差,IOP范围为10-21 mmHg,ICP范围为5-15 mmHg12。通过两个腔室之间层隙的压力差称为跨层压力梯度(TLPG)13。青光眼的一个主要危险因素是IOP14升高

增加的IOP会增加层流区域内和层流区域的应变61516。在人类和动物模型中的实验观察表明,ONH是轴突损伤的初始部位1718。在ONH引起青光眼损伤的IOP相关应力和应变的生物力学范式也影响青光眼的病理生理学192021。尽管在人类中,压力引起的变化会机械地损害RGC轴突22,但叶片内缺乏胶原板的啮齿动物也可能发展为青光眼723。此外,IOP 升高仍然是原发性开角型青光眼患者最突出的危险因素,而正常张力型青光眼患者即使没有 IOP 升高也会发生青光眼性视神经病变。此外,还有一部分眼部高血压患者没有视神经损伤。也有人提出,脑脊液压力(CSFp)可能在青光眼发病机制中发挥作用。有证据表明,与正常个体相比,青光眼患者的ICP降低至~5 mmHg,从而导致经层压升高,并在疾病中起关键作用2425。以前,在犬类模型中已经证明,通过控制IOP和CSFp的变化,视盘可以有很大的位移26。猪眼中CSFp的升高也显示出LC区域和层后神经组织内的主要应变增加。RGC和LC区域的应变增加导致轴突运输阻塞和RGCs的损失27。RGC 的进行性变性与营养支持的丧失2829、炎症过程/免疫调节刺激3031 和凋亡效应物有关2932333435。此外,轴突损伤(图3)对RGC造成不利影响,引发再生失败36373839。尽管IOP的影响已经得到了很好的研究,但对异常的跨层压力变化进行了很少的研究。青光眼的大多数治疗方法都集中在稳定眼压上。然而,即使降低眼压可以减缓疾病的进展,它也不能逆转视野丧失并防止RGC的完全丧失。了解青光眼中与压力相关的神经退行性变化对于预防RGC死亡至关重要。

目前的证据表明,由于患有创伤性或神经退行性视力障碍的患者的各种机械,生物学或生理变化引起的跨层压力调节可导致显着的视力丧失。目前,没有真正的临床前人类后段模型可以研究离体人ONH内的青光眼生物力学损伤。观察和治疗眼睛的后段是眼科的巨大挑战27。靶向后眼存在物理和生物屏障,包括高消除率、血视网膜屏障和潜在的免疫反应40。新药靶标的大多数疗效和安全性测试都是利用体外细胞和体内动物模型41完成的。眼部解剖结构很复杂,体外研究不能准确地模拟组织模型系统呈现的解剖学和生理障碍。尽管动物模型是药代动力学研究的必要条件,但人类后眼的眼部生理学可能因各种动物物种而异,包括视网膜的细胞解剖结构,脉管系统和ONH4142

使用活体动物需要密集而详细的道德法规、高度的财务承诺和有效的可重复性43。最近,在实验研究中对动物的道德使用提出了其他多项指南444546。动物试验的替代方案是使用离体人眼模型来研究疾病发病机制和保护ONH损伤的药物的潜在分析。人类死后组织是研究人类疾病范式的宝贵资源,特别是在人类神经退行性疾病的情况下,因为在动物模型中开发的潜在药物的鉴定需要可转化为人类47。离体人供体组织已被广泛用于人类疾病的研究474849,人类前段灌注器官培养系统此前为研究IOP升高的病理生理学提供了独特的离体模型505152

为了研究人眼中与IOP和ICP相关的跨层压,我们成功设计并开发了一种双腔跨层自主系统(TAS),该系统可以使用来自人类供体眼睛的后段独立调节IOP和ICP。它是第一个研究跨层压力并利用TLPG对ONH的生物力学效应的离体人体模型。

这种离体人TAS模型可用于发现和分类由于IOP或ICP慢性升高而发生的细胞和功能修饰。在本报告中,我们详细介绍了剖析,设置和监测TAS人类后段模型的分步方案。该协议将允许其他研究人员有效地复制这种新颖的离体加压人类后段模型,以研究生物力学疾病的发病机制。

Protocol

根据《赫尔辛基宣言》的规定,眼睛被用于涉及人体组织的研究。 注意:来自信誉良好的眼库(例如,佛罗里达州坦帕狮子眼科移植研究所)的眼睛在死亡后6-12小时内收获,并检测了供体血清的乙型肝炎,丙型肝炎和人类免疫缺陷病毒1和2。一旦它们被接受,眼睛就会在24小时内被解剖并设置在TAS模型中。排除标准包括任何眼部病变。眼睛不会因年龄、种族或性别而被排除在…

Representative Results

跨层自主系统的设计和创建经层压差是包括青光眼在内的各种疾病发病机制的潜在关键机制。所描述的模型的用途包括但不限于青光眼(眼压升高,可能降低 ICP)、创伤性脑损伤(ICP 升高)和长期暴露于微重力相关视力障碍(ICP 升高、IOP 升高)的研究。为了帮助发现靶向人眼中跨层压的分子发病机制,我们设计、创建并验证了 TAS 模型。我们的新型离体人体模型为独立研究ICP和I…

Discussion

人类死后组织是研究人类神经退行性疾病的特别有价值的资源,因为在动物模型中开发的潜在药物的鉴定需要可转化为人类47。人类眼压升高的影响已经得到充分证实,但对异常 ONH 跨层压力变化的研究很少。尽管存在多种动物模型和人类ONH的有限建模,但没有离体人体模型来研究跨层压力变化415455,…

開示

The authors have nothing to disclose.

Acknowledgements

该项目的资金来自Colleen M. McDowell博士的可自由支配资金。这项工作部分得到了研究预防失明公司对威斯康星大学麦迪逊分校眼科和视觉科学系的无限制资助的支持。我们感谢Abbot F. Clark博士和Weiming Mao博士对灌注器官培养模型的技术援助。我们感谢狮子会眼科移植与研究所(佛罗里达州坦帕市)为人类供体提供眼睛。

Materials

#122, 1-1/8" Inside x 1-5/16" Outside Diam, Viton O-Ring, 3/32" Thick,
755 Durometer 50 Pack
Amazon B07DRGPPZJ
114 Buna-N O-Ring, 70A Durometer, Black, 5/8" ID, 13/16" OD, 3/32" Width (Pack of 100) Amazon B000FMYRHK
30 mL Syringes without Needle Vitality Medical 302832
3-Way Stopcock, 2 Female Luer Locks, Swivel Male Luer Lock, Vented Cap QOSINA 2C6201
4-40 X 1/2 PH PAN MS SS/CHROME & appropriate sized phillips screwdriver Brikksen Stainless Steel Fastners PPMSSSCH4C.5  
ANPROLENE 16 LARGE AMPULE Fisher Scientific NC9085343  
Betadine Purdue PUR1815001EACH  
Corning 100 x 20mm tissue-culture treated culture dishes Sigma-Aldrich CLS430167-100EA  
Corning L-glutamine Solution Fisher Scientific MT25005CI
Covidien 3033 Curity Gauze Sponge, 4" x 4", 12-Ply, Sterile, 1200/CS Med Plus Medical Supply COV-3033-CS
Dressing Forceps Delicate Curved (serrated) Katena K5-4010
Dumont #5 – Fine Forceps F.S.T. 11254-20
Eye Scissors Standard Curved Katena K4-7410
Falcon 150 x 15mm Plain Sterile Disposable Petri Dishes Capitol Scientific 351058
Fisherbrand 4 oz. Specimen Containers Fisher Scientific 16-320-730
Fisherbrand Instant Sealing Sterilization Pouches Fisher Scientific 01-812-54
Fisherbrand Instant Sealing Sterilization Pouches Fisher Scientific 01-812-55
Fisherbrand Instant Sealing Sterilization Pouches Fisher Scientific 01-812-58
HyClone Dulbecco's Modified Eagles Medium Fisher Scientific SH3024302
HyClone Penicillin Streptomycin 100X Solution Fisher Scientific SV30010
Hydrophilic Filter with Female Luer Lock Inlet, Male Luer Slip Outlet, Blue and Clear Qosina 28217
Hydrostatic pressure transducers, DELTRAN ® II, Catalog # DPT-200 with a 3CC/HR flow rate AD instruments DPT-200
JG15-0.5HPX 15 Gauge 0.5" NT Premium Series Dispensing Tip 50/Box Jenson Global JG15-0.5HPX 15
Keyence B2‐X710 microscope Keyence B2-X710
LabChart 8 AD instruments LabChart 8
Leica ST5020 Multi-stainer Leica ST5020
Non-Vented Universal Luer Lock Cap, White QOSINA 65811
Octal Bridge Amp (Model # FE228) AD instruments FE228
Pharmco Products ETHYL ALCOHOL, 200 PROOF Fisher Scientific NC1675398
Phosphate Buffered Solution (PBS) Sigma-Aldrich D8537-500ML
PowerLab 8/35 (Model # PL3508) AD instruments PL3508
ProLong Gold Antifade Mountant with DAPI ThermoFisher P36935
Push-to-Connect Tube Fitting for Air and Water Straight Adapter, 1/8" Tube OD x 1/8 NPT Male McMAster-Carr 7880T113
Push-to-Connect Tube Fitting with Universal Thread for Air and Water, Adapter, 1/8" Tube OD x 1/8 Pipe McMAster-Carr 51235K101
Saint-Gobain Tygon S3 E-3603 Flexible Tubing 500 ft. Fisher Scientific 14-171-268
Superblock T20 Fisher Scientific PI37536
Surgical Scissors – Sharp-Blunt F.S.T. 14001-14
Tissue Forceps Delicate 1×2 Teeth Curved Katena K5-4110
Translaminar Autonomous System (TAS) University of North Texas Health Science Center N/A
USA Size 030 O-ring Buna-N, B1000, 70 Durometer, Black, Buna-N
(NBR, Nitrile, Buna)
Marco Rubber & Plastics B1000-030

参考文献

  1. Pascolini, D., Mariotti, S. P. Global estimates of visual impairment: 2010. The British Journal of Ophthalmology. 96 (5), 614-618 (2012).
  2. Bastawrous, A., et al. Posterior segment eye disease in sub-Saharan Africa: review of recent population-based studies. Tropical Medicine & International Health. 19 (5), 600-609 (2014).
  3. Morgan, J. E. Circulation and axonal transport in the optic nerve. Eye. 18 (11), 1089-1095 (2004).
  4. Burgoyne, C. F. A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Experimental Eye Research. 93 (2), 120-132 (2011).
  5. Quigley, H. A., Addicks, E. M. Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Investigative Ophthalmology, Visual Science. 19 (2), 137-152 (1980).
  6. Quigley, H. A., Addicks, E. M., Green, W. R., Maumenee, A. E. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Archives of Ophthalmology. 99 (4), 635-649 (1981).
  7. Howell, G. R., et al. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. The Journal of Cell Biology. 179 (7), 1523-1537 (2007).
  8. Johnson, E. C., Jia, L., Cepurna, W. O., Doser, T. A., Morrison, J. C. Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Investigative Ophthalmology, Visual Science. 48 (7), 3161-3177 (2007).
  9. Howell, G. R., et al. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. Journal of Clinical Investigation. 121 (4), 1429-1444 (2011).
  10. Qu, J., Jakobs, T. C. The Time Course of Gene Expression during Reactive Gliosis in the Optic Nerve. PloS one. 8 (6), 67094 (2013).
  11. Berdahl, J. P., Fautsch, M. P., Stinnett, S. S., Allingham, R. R. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Investigative Ophthalmology, Visual Science. 49 (12), 5412-5418 (2008).
  12. Berdahl, J. P., Allingham, R. R. Intracranial pressure and glaucoma. Current Opinion in Ophthalmology. 21 (2), 106-111 (2010).
  13. Morgan, W. H., et al. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Investigative Ophthalmology, Visual Science. 39 (8), 1419-1428 (1998).
  14. Leske, M. C., Connell, A. M., Wu, S. Y., Hyman, L. G., Schachat, A. P. Risk factors for open-angle glaucoma. The Barbados Eye Study. Archives of Ophthalmology. 113 (7), 918-924 (1995).
  15. Quigley, H. A., Green, W. R. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology. 86 (10), 1803-1830 (1979).
  16. Burgoyne, C. F., Downs, J. C., Bellezza, A. J., Hart, R. T. Three-dimensional reconstruction of normal and early glaucoma monkey optic nerve head connective tissues. Investigative Ophthalmology, Visual Science. 45 (12), 4388-4399 (2004).
  17. Diekmann, H., Fischer, D. Glaucoma and optic nerve repair. Cell and Tissue Research. 353 (2), 327-337 (2013).
  18. Nickells, R. W., Howell, G. R., Soto, I., John, S. W. Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annual Review of Neuroscience. 35, 153-179 (2012).
  19. Burgoyne, C. F., Downs, J. C. Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. Journal of Glaucoma. 17 (4), 318-328 (2008).
  20. Sigal, I. A., Ethier, C. R. Biomechanics of the optic nerve head. Experimental Eye Research. 88 (4), 799-807 (2009).
  21. Sigal, I. A., Flanagan, J. G., Tertinegg, I., Ethier, C. R. Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry. Biomechanics and Modeling in Mechanobiology. 8 (2), 85-98 (2009).
  22. Morgan, J. E., Jeffery, G., Foss, A. J. Axon deviation in the human lamina cribrosa. The British Journal of Ophthalmology. 82 (6), 680-683 (1998).
  23. Danias, J., et al. Quantitative analysis of retinal ganglion cell (RGC) loss in aging DBA/2NNia glaucomatous mice: comparison with RGC loss in aging C57/BL6 mice. Investigative Ophthalmology, Visual Science. 44 (12), 5151-5162 (2003).
  24. Berdahl, J. P., Allingham, R. R., Johnson, D. H. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology. 115 (5), 763-768 (2008).
  25. Fleischman, D., Allingham, R. R. The role of cerebrospinal fluid pressure in glaucoma and other ophthalmic diseases: A review. Saudi Journal of Ophthalmology. 27 (2), 97-106 (2013).
  26. Morgan, W. H., et al. Optic disc movement with variations in intraocular and cerebrospinal fluid pressure. Investigative Ophthalmology, Visual Science. 43 (10), 3236-3242 (2002).
  27. Feola, A. J., et al. Deformation of the Lamina Cribrosa and Optic Nerve Due to Changes in Cerebrospinal Fluid Pressure. Investigative Ophthalmology & Visual Science. 58 (4), 2070-2078 (2017).
  28. Koeberle, P. D., Bahr, M. Growth and guidance cues for regenerating axons: where have they gone. Journal of Neurobiology. 59 (1), 162-180 (2004).
  29. Kermer, P., Klocker, N., Bahr, M. Neuronal death after brain injury. Models, mechanisms, and therapeutic strategies in vivo. Cell and Tissue Research. 298 (3), 383-395 (1999).
  30. Koeberle, P. D., Gauldie, J., Ball, A. K. Effects of adenoviral-mediated gene transfer of interleukin-10, interleukin-4, and transforming growth factor-beta on the survival of axotomized retinal ganglion cells. 神経科学. 125 (4), 903-920 (2004).
  31. Kipnis, J., et al. Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience. 21 (13), 4564-4571 (2001).
  32. Isenmann, S., Wahl, C., Krajewski, S., Reed, J. C., Bahr, M. Up-regulation of Bax protein in degenerating retinal ganglion cells precedes apoptotic cell death after optic nerve lesion in the rat. The European Journal of Neuroscience. 9 (8), 1763-1772 (1997).
  33. Kermer, P., et al. Caspase-9: involvement in secondary death of axotomized rat retinal ganglion cells in vivo. Brain research. Molecular Brain Research. 85 (1-2), 144-150 (2000).
  34. Kermer, P., Klocker, N., Labes, M., Bahr, M. Inhibition of CPP32-like proteases rescues axotomized retinal ganglion cells from secondary cell death in vivo. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience. 18 (12), 4656-4662 (1998).
  35. Kikuchi, M., Tenneti, L., Lipton, S. A. Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience. 20 (13), 5037-5044 (2000).
  36. Barron, K. D., Dentinger, M. P., Krohel, G., Easton, S. K., Mankes, R. Qualitative and quantitative ultrastructural observations on retinal ganglion cell layer of rat after intraorbital optic nerve crush. Journal of Neurocytology. 15 (3), 345-362 (1986).
  37. Misantone, L. J., Gershenbaum, M., Murray, M. Viability of retinal ganglion cells after optic nerve crush in adult rats. Journal of Neurocytology. 13 (3), 449-465 (1984).
  38. Bahr, M. Live or let die – retinal ganglion cell death and survival during development and in the lesioned adult CNS. Trends in Neurosciences. 23 (10), 483-490 (2000).
  39. Klocker, N., Zerfowski, M., Gellrich, N. C., Bahr, M. Morphological and functional analysis of an incomplete CNS fiber tract lesion: graded crush of the rat optic nerve. Journal of Neuroscience Methods. 110 (12), 147-153 (2001).
  40. Del Amo, E. M., et al. Pharmacokinetic aspects of retinal drug delivery. Progress in Retinal and Eye Research. 57, 134-185 (2017).
  41. Rousou, C., et al. A technical protocol for an experimental ex vivo model using arterially perfused porcine eyes. Experimental Eye Research. 181, 171-177 (2019).
  42. Vézina, M. . Assessing Ocular Toxicology in Laboratory Animals. , 1-21 (2012).
  43. de Boo, J., Hendriksen, C. Reduction strategies in animal research: a review of scientific approaches at the intra-experimental, supra-experimental and extra-experimental levels. Alternatives to Laboratory Animals. 33 (4), 369-377 (2005).
  44. Kirk, R. G. W. Recovering The Principles of Humane Experimental Technique: The 3Rs and the Human Essence of Animal Research. Science, Technology, & Human Values. 43 (4), 622-648 (2018).
  45. Burden, N., Chapman, K., Sewell, F., Robinson, V. Pioneering better science through the 3Rs: an introduction to the national centre for the replacement, refinement, and reduction of animals in research (NC3Rs). Journal of the American Association for Laboratory Animal Science. 54 (2), 198-208 (2015).
  46. Singh, J. The national centre for the replacement, refinement, and reduction of animals in research. Journal of Pharmacology and Pharmacotherapeutics. 3 (1), 87-89 (2012).
  47. White, K., et al. Effect of Postmortem Interval and Years in Storage on RNA Quality of Tissue at a Repository of the NIH NeuroBioBank. Biopreservation and Biobanking. 16 (2), 148-157 (2018).
  48. Ervin, J. F., et al. Postmortem delay has minimal effect on brain RNA integrity. Journal of Neuropathology & Experimental Neurology. 66 (12), 1093-1099 (2007).
  49. Heinrich, M., Matt, K., Lutz-Bonengel, S., Schmidt, U. Successful RNA extraction from various human postmortem tissues. International Journal of Legal Medicine. 121 (2), 136-142 (2007).
  50. Johnson, D. H., Tschumper, R. C. Human trabecular meshwork organ culture. A new method. Investigative Ophthalmology, Visual Science. 28 (6), 945-953 (1987).
  51. Gottanka, J., Chan, D., Eichhorn, M., Lutjen-Drecoll, E., Ethier, C. R. Effects of TGF-beta2 in perfused human eyes. Investigative Ophthalmology, Visual Science. 45 (1), 153-158 (2004).
  52. Pang, I. H., McCartney, M. D., Steely, H. T., Clark, A. F. Human ocular perfusion organ culture: a versatile ex vivo model for glaucoma research. Journal of Glaucoma. 9 (6), 468-479 (2000).
  53. Aryee, M. J., Gutierrez-Pabello, J. A., Kramnik, I., Maiti, T., Quackenbush, J. An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation). BMC Bioinformatics. 10, 409 (2009).
  54. Feola, A. J., et al. Finite Element Modeling of Factors Influencing Optic Nerve Head Deformation Due to Intracranial Pressure. Investigative Ophthalmology, Visual Science. 57 (4), 1901-1911 (2016).
  55. Downs, J. C. Optic nerve head biomechanics in aging and disease. Experimental Eye Research. 133, 19-29 (2015).
  56. Downs, J. C., Roberts, M. D., Burgoyne, C. F. Mechanical environment of the optic nerve head in glaucoma. Optometry and Vision Science. 85 (6), 425-435 (2008).
  57. Downs, J. C., et al. Viscoelastic characterization of peripapillary sclera: material properties by quadrant in rabbit and monkey eyes. Journal of Biomechanical Engineering. 125 (1), 124-131 (2003).
  58. Wagner, A. H., et al. Exon-level expression profiling of ocular tissues. Experimental Eye Research. 111, 105-111 (2013).
  59. Pels, E., Beele, H., Claerhout, I. Eye bank issues: II. Preservation techniques: warm versus cold storage. International Ophthalmology. 28 (3), 155-163 (2008).
  60. Reinhard, K., et al. Hypothermia Promotes Survival of Ischemic Retinal Ganglion Cells. Investigative Ophthalmology, Visual Science. 57 (2), 658-663 (2016).

Play Video

記事を引用
Sharma, T. P., Curry, S. M., Lohawala, H., McDowell, C. Translaminar Autonomous System Model for the Modulation of Intraocular and Intracranial Pressure in Human Donor Posterior Segments. J. Vis. Exp. (158), e61006, doi:10.3791/61006 (2020).

View Video