Here, we describe a protocol to visualize and analyze the pharyngeal arch arteries 3, 4, and 6 of mouse embryos using whole-mount immunofluorescence, tissue clearing, confocal microscopy, and 3D reconstruction.
Improper formation or remodeling of the pharyngeal arch arteries (PAAs) 3, 4, and 6 contribute to some of the most severe forms of congenital heart disease. To study the formation of PAAs, we developed a protocol using whole-mount immunofluorescence coupled with benzyl alcohol/benzyl benzoate (BABB) tissue clearing, and confocal microscopy. This allows for the visualization of the pharyngeal arch endothelium at a fine cellular resolution as well as the 3D connectivity of the vasculature. Using software, we have established a protocol to quantify the number of endothelial cells (ECs) in PAAs, as well as the number of ECs within the vascular plexus surrounding the PAAs within pharyngeal arches 3, 4, and 6. When applied to the whole embryo, this methodology provides a comprehensive visualization and quantitative analysis of embryonic vasculature.
During mouse embryogenesis, pharyngeal arch arteries (PAAs) arise as symmetrical, bi-lateral pairs of arteries that connect the heart with the dorsal aortae1. As the embryo develops, the first and second pairs of PAAs regress, while the 3rd, 4th, and 6th PAAs undergo a series of asymmetrical remodeling events to form the aortic arch arteries2.
The PAAs 3, 4 and 6 develop via vasculogenesis, which is the de novo formation of blood vessels3. Defects in the formation or remodeling of these arch arteries give rise to various congenital heart defects, such as those seen in patients with DiGeorge Syndrome4,5. Therefore, understanding mechanisms that regulate the development of PAAs can lead to a better understanding of congenital heart disease (CHD) etiology.
Current approaches for visualizing and analyzing PAA development include immunofluorescence of tissue sections, vascular casts, India ink injection, high resolution episcopic microscopy, and/or whole-mount immunohistochemistry1,4,5,6,7. Herein, we describe a protocol combining whole-mount immunofluorescence, confocal microscopy and 3D image rendering in order to gather, analyze, and quantify volumetric data, vascular connectivity and cell identity. Further, we detail a method to compartmentalize and quantify the numbers of ECs in each pharyngeal arch as a means to study formation of the pharyngeal arch vascular plexus and its remodeling into the PAAs. While this protocol is designed for analyzing PAA development, it can be used to analyze other developing vascular networks.
Animal use and procedures were approved by the Institutional Animal Care and Use Committee at Rutgers University.
1. Preparation of solutions
2. Embryo dissection and fixation
NOTE: This protocol is suitable for E9.5 and E10.5 mouse embryos (male or female) isolated from any mouse strain. For younger and older embryos, incubations times should be experimentally determined to maximize signal to noise ratio of fluorescence signal.
3. Embryo staining
NOTE: In this section, embryos are permeabilized and stained with primary and secondary antibodies. Because PAA development proceeds rapidly, differences in embryonic stage will greatly affect the analysis downstream. Therefore, embryos must be age-matched by carefully counting somites to match control and mutant pairs prior to further manipulations.
4. Embedding embryos in agarose
NOTE: In section 4, the embryo(s) will be embedded in agarose. This embedding process serves two purposes: to properly orient the embryo prior to imaging, and to aid in locating the embryo after it has been cleared in BABB (steps 5.2.2 – 5.3.2).
5. Dehydration and tissue clearing
NOTE: In this section, embryo(s) are dehydrated using methanol series, then cleared in the organic solvent, BABB, and mounted between two coverslips separated by a rubber spacer; in this protocol Fast Well rubber spacers are used. The Fast Well bumper has a double-sided adhesive surface. The spacer is needed to create a well, in which the embryo will be placed and held between two coverslips.
6. Acquisition of data
NOTE: In the following steps, the endothelium of pharyngeal arches 3, 4, and 6 will be imaged using confocal microscopy.
7. Analysis using the Imaris software
NOTE: In these steps, confocal images will be analyzed using the microscopy image analysis software, Imaris version 9.2.0. During this analysis, we will first select regions of interest to be analyzed by creating surfaces. Next, we will use the Mask function to visually separate these regions. Finally, we will use the Spot function to quantify the number of ECs within each region of interest.
The whole-mount immunofluorescence protocol presented here produces clear and clean results, allowing for the 3D reconstruction of pharyngeal arch endothelium, as seen in Figure 1A. It is important to incubate embryos for a sufficient amount of time in each antibody solution to ensure complete penetration through the sample, as well as, thoroughly washing embryos post antibody incubation. In Figure 1B, large, bright dots appear as a result of particulate in either the antibody or blocking buffer solutions. We have found that centrifuging each solution before use and longer periods of PBST washes after each antibody incubation resolves this problem.
Figure 2 illustrates the process used to surface a pharyngeal arch and a PAA for analysis as described in section 7 of the protocol. Using the masked function, Imaris software allows surfaced regions to be visually separated and analyzed independently.
Figure 3 demonstrates individual masking of different vascular compartments in the pharyngeal arches: the PAA (Figure 3A, B, C) and the plexus (Figure 3A', B', C'). Masking allows for the analysis and quantification of EC numbers in each structure separately. In Figure 3C-C', the Spot feature is used to quantify the total number of ECs in both the PAA and plexus, by assigning a single spot for each nucleus expressing ERG. It is important to note that the algorithm used for the Spot function is designed to generate a dot for any pixel of a specified size. ERG, which is used here as a marker of EC nuclei, is also expressed in neural crest cells8; neural crest cells do not express VEGFR2. Figure 3D illustrates an example of an ERG-positive (green), VEGFR2-negative (pink) spot that has been generated by the Imaris Spot function. As a result, it is essential to verify that each dot represents a single EC and is labeled with both ERG and VEGFR2.
Step | Time | Temperature | |
1 | PBST Wash/Permeabilization | 24 h or O/N | 4 °C |
2 | Blocking Buffer | 25 h or O/N | 4 °C |
3 | Primary Antibody | 4-5 days | 4 °C |
4 | PBST Wash | 4-5 times a day for 2 days | RT (or 4 °C if O/N) |
5 | Secondary Antibody | 4-5 days | 4 °C |
6 | PBST Wash | 4-5 times a day for 2 days | RT (or 4 °C if O/N) |
7 | Embed | N/A | RT |
8 | Methanol Dehydration and BABB | 1 hour per step | RT |
Table 1: Overview of whole mount immunofluorescence protocol. O/N – overnight; RT – room temperature.
Figure 1: Comparison of clean and dirty images following whole-mount immunofluorescence. Sagittal views of E10.5 embryo show the use of anti-VEGFR2 antibody (white) to visualize the PAA endothelium. Embryos thoroughly washed with PBST post antibody incubations (A) have a higher signal-to-noise ratio and produce a cleaner image, when compared with embryos that are not thoroughly washed (B). Arrows in B show areas of noise/dirt that has appeared in the image when an embryo is not thoroughly washed or the antibody solution has not been centrifuged. Please click here to view a larger version of this figure.
Figure 2: Surfacing of pharyngeal arch (PA) and PAA. A 2D sagittal view (A) is used to identify the location of the PAAs in the confocal image. A coronal ortho slicer (A, yellow line) is place through the PAAs. The pharyngeal arch (B) and PAA (C) are then surfaced in the coronal orientation using the Distance Drawing tool in Imaris. The Distance Drawing tool, set to 10 μm, is used to trace the perimeter of the 3rd pharyngeal arch (B) or the PAA (C). Outlines are drawn every 10-25 slices through the entire arch (B', C'). Outlines are combined to generate a 3D surface of the pharyngeal arch (B") or the PAA (C"). Please click here to view a larger version of this figure.
Figure 3: Quantification of EC numbers in a PAA and a plexus. 3D reconstructions are used to visualize vessel structure and expression of EC markers in a PAA or in an EC plexus separately. Panels A-A' show the expression of VEGFR2 in the PAA (A, yellow) and in the plexus (A', pink). Panel A" illustrates a merge of the PAA and plexus VEGFR2 expression. Panels B-B' show the expression of ERG in the PAA (B, red) and in the plexus (B', green). Panel B" illustrates the merge of the PAA and plexus. C-C'. The Spot function in Imaris is used to quantify the number of ECs in either the PAA or plexus. Each ERG-positive cell in the PAA (C, red) or plexus (C', green) are assigned a single spot to mark a single EC. The arrow in C'-D shows an example ERG-positive, VEGFR2-negative spot in the plexus that has been generated by the Imaris Spot function. This spot is excluded from quantification. Please click here to view a larger version of this figure.
The ability to visualize the endothelium in mouse embryos in 3D has provided new insights into their development3. Here we present a protocol that allows for high-resolution 3D imaging of embryos, visualization of vascular connectivity, and quantitative analyses of PAA formation. This protocol can be employed to see how genetic alterations or environmental insults impact PAA development. The procedure reported here uses antibodies against VEGFR2 and ERG to visualize PAA formation and quantify EC number; however, additional antibodies can be used to visualize and analyze other aspects of arch artery development, such as neural crest recruitment or smooth muscle cell differentiation. If this procedure is to be used at earlier stages of embryogenesis, it is important to note that some antigens (e.g., ERG) detected in this protocol may not yet be expressed. Other nuclear stains such as DAPI or DRAQ5 or lineage labeling with nuclear-tagged tracers can be used to quantify EC number.
There are several critical steps within the protocol: ensuring that 1) embryos do not become desiccated between solution changes; 2) embryos are thoroughly washed after antibody incubations; and 3) that embryos are completely dehydrated with MeOH before tissue clearing with BABB.
Methanol washes prior to tissue clearing serve two purposes: to eliminate fluorescence due to the expression of fluorescent proteins (e.g. the expression of EGFP or tdTomato used for lineage tracing) in the embryo, and to dehydrate the tissue. The elimination of fluorescence from fluorescent proteins allows for the use of any combination of fluorophores for imaging. Antibodies against EGFP and TdTomato (cherry) can be used to visualize expression of these fluorescent proteins. Alternatively, MeOH can be replaced by tetrahydrofuran to preserve the fluorescence of fluorescent proteins9.
We have found that embryos which have not been properly dehydrated prior to BABB clearing are difficult to image due to light scattering. BABB is a hydrophobic solution that requires complete dehydration in an organic solvent in order to clear the opaque tissue. Complete clearing ensures the ability to obtain images at the deepest possible levels within the embryo10,11. In this protocol, we used a 20x water immersion objective, due to its long working distance and availability at the time of our experiments. Oil immersion objectives are better suitable for this protocol, as BABB and oil have closer refractive indices than water and BABB. However, despite the difference in refractive index, water immersion objective used in this protocol provided excellent image quality.
There are a few limitations of this protocol. BABB clearing utilized here is toxic and corrosive11,12,13. BABB dissolves glue and plastics. If samples are not handled properly during imaging, microscope objective lens can be damaged by BABB that may escape from the sample via cracks in the coverslip or a broken seal between the Fast Well bumper and the coverslip. Clearing methods that do not use organic solvents, such as CLARITY, can be used as alternatives10,11,14. CLARITY's refractive index matching solution has a refractive index similar to that of water, which makes it a suitable clearing method if using a water immersion objective. An additional limitation of this protocol is that it can only be performed on non-living tissues, thus preventing its application for live imaging.
The authors have nothing to disclose.
We thank Brianna Alexander, Caolan O'Donnell and Michael Warkala for careful reading and editing of this manuscript. This work was supported by the funding from the National Heart, Lung and Blood Institute of the NIH R01 HL103920, R01 HL134935, R21 OD025323-01 to SA; AJR is supported by NHLBI HL103920-08S1 and the National Institute of Arthritis and Musculoskeletal and Skin Diseases Training grant T32052283-11.
10x PBS | MP Biomedicals | PBS10X02 | |
20x water immersion objective | Nikon | MRD77200 | |
Agarose | Bio-Rad Laboratories | 1613101 | |
Alexa Fluor 488 anti-goat | Invitrogen | A-11055 | |
Alexa Fluor 555 anti-mouse | Invitrogen | A-31570 | |
Analysis Software | Imaris 9.2.0 | ||
Benzyl Alcohol | Sigma-Aldrich | 305197 | |
Benzyl Benzoate | Sigma-Aldrich | 8.18701.0100 | |
Cover Slips | VWR | 16004-312 | |
DAPI (5 mg/mL stock) | Fisher Scientific | D3571 | |
Eppendorf Tubes (2.0 mL) | Fisher Scientific | 05-408-138 | |
Ethanol | VWR | 89370-084 | |
Falcon tubes (50 mL) | Corning | 352098 | |
Fast wells | Grace Bio Labs | 664113 | |
Forceps | Roboz | RS-5015 | |
Goat anti-VEGFR2 | R&D Systems, Inc. | AF644 | |
Methanol | VWR | BDH1135-4LP | |
Microscope | Nikon | A1HD25 | |
Mouse anti-ERG | Abcam | ab214341 | |
Normal Donkey Serum | Sigma-Aldrich | D9663 | |
Paraformaldehyde | Electron Microscopy Sciences | 15710 | |
Pasteur pipets | Fisher Scientific | 13-678-20D | |
Petri dishes (35 mm) | Genesee Scientific | 32-103 | |
Petri dishes (60 mm) | Genesee Scientific | 32-105 | |
Plastic Molds | VWR | 18000-128 | |
Scapels | Exelint International Co. | 29552 | |
Triton-X-100 | Fisher Scientific | BP 151-500 |