赤血球の誘導のためのプロトコルは、赤血球における細胞死をプログラムし、イオノフォアカルシウム、イオノマイシン、を使用して、提供される。成功したエリプトーシスは、膜外葉ペレット中の局在ホスファチジルセリンをモニタリングすることによって評価される。プロトコルの成功に影響を与える要因が検討され、最適な条件が提供されています。
赤血球は、細胞死をプログラムし、多くの血球疾患および赤血球への損傷の間に起こる。赤血球の特徴は、細胞膜の組成非対称性の喪失であり、膜外葉にホスファチジルセリンの転座につながる。このプロセスは、膜リーフレット間のリン脂質の双方向移動を促進する酵素であるスクランバゼを活性化するCa2+の細胞内濃度の増加によって引き起こされます。様々な疾患状態における赤血球症の重要性を考えると、インビトロで赤血球症を誘発する取り組みが行われてきた。このような努力は、一般に、カルシウムイオノフォア、イオノマイシン、細胞内Ca2+濃度を増強し、赤血球症を誘発することに依存してきた。しかしながら、ヨーノマイシンを用いてエリプトーシスを誘導する手順に関して、文献には多くの不一致が報告されている。本明細書では、ヒト赤血球におけるイオノマイシン誘発性赤血球に対する段階的なプロトコルを報告する。イオノフォア濃度、インキュベーション時間、グルコース枯渇などの重要なステップに焦点を当て、代表的な結果を提供します。このプロトコルは、実験室で再現的に赤血球症を誘発するために使用することができる。
赤血球のプログラム細胞死は、赤血球とも呼ばれ、多くの臨床状態および血腫性疾患で一般的である。赤血球症は、細胞形質膜1、2における細胞収縮およびリン脂質非対称性の喪失に関連する。非対称性の喪失は、通常内側リーフレット3、4に局在する脂質であるホスファチジルセリン(PS)を細胞外リーフレットに転位させ、マクロファージにシグナルを送り、欠陥のある赤血球5、6、7、8を除去する。赤血球の正常寿命の終わりに、マクロファージによる赤血球の除去は、循環中の赤血球のバランスを保証する。しかしながら、鎌状赤血球症およびサラセミア9、10、11などの疾患状態では、赤血球症の増強が重症貧血2をもたらし得る。血行性疾患における重要性から、赤血球症を誘発または阻害する因子と、この過程の基礎となる分子機構を調べることに大きな関心がある。
健康な赤血球の形質膜は非対称であり、異なるリン脂質が外側と内側のリーフレットに局在する。膜非対称性は、主に膜酵素の作用によって調節される。アミノリン脂質トランスロカーゼは、アミノリン脂質、PSおよびホスファチジルエタノールアミン(PE)の輸送を促進し、これらの脂質を細胞内リーフレットに導くことによって。一方、フロフパーゼは、リン脂質を含むコリンを輸送し、ホスファチジルコリン(PC)およびスフィンゴミエリン(SM)を、細胞膜12の内側から外側のリーフレットに輸送する。しかし、健康な細胞とは異なり、赤球の膜はスクランブルされます。これは、第3の酵素の作用によるもので、スクランバゼは、アミノリン脂質13、14、15、16の双方向輸送を促進することによりリン脂質非対称性を破壊する。スクランマゼは、Ca2+の高い細胞内レベルによって活性化される。従って、細胞膜12を横切るCa2+の輸送を容易にするカルシウムイオノフォアは、赤血球症の効率的な誘導剤である。
イオノマイシンは、イオノフォアカルシウムであり、赤血球12、17、18、19、20、21、22、23、24、25、26で赤血球中の赤血球を誘導するために広く使用されている。イオノマイシンは、Ca2+イオンを結合および捕捉し、それを細胞質空間27、28、29に輸送するために必要な親水性基および疎水性基の両方を有する。これは、スクランブラーゼの活性化およびPSの外側リーフレットへの転位につながり、これは、PS12に対する親和性が高い細胞タンパク質であるアネキシンVを用いて容易に検出することができる。イオノマイシンによるエリプトーシスの誘発は一般的に報告されているが、文献にはかなりの方法の不一致がある(表1)。赤血球の集団は、イオノフォア濃度、イオノフォアによる治療時間、および細胞外環境の糖度(グルコース枯渇がカチオンチャネルを活性化し、細胞質空間へのCa2+の侵入を容易にする)30、31などの異なる要因に依存する。しかし、文献ではこれらの因子にはほとんど一貫性がなく、インビトロで再現的に赤血球症を行うことが困難である。
このプロトコルでは、ヒト赤血球において赤血球を誘導する段階的な手順を提示する。Ca2+濃度、イオノフォア濃度、治療時間、グルコース枯渇緩衝液中のプレインキュベーションを含む成功したエリプトーシスに影響を与える因子を調べ、最適な値が報告される。この手順は、グルコースフリー緩衝液中の赤血球のプレインキュベーションが、グルコース含有緩衝液と比較して赤血球症の割合を有意に増加することを示す。このプロトコルは、様々な用途に対して赤血球を作製するために実験室で使用することができます。
この手順の目的は、エリプトーシスの誘導を成功させるために重要な要因であるイオノフォア濃度、治療時間、および細胞外グルコース濃度に最適な値を提供することです。プロトコルの重要なステップは、細胞外グルコースの枯渇であり、その重要性にもかかわらず、文献では十分に強調されていない。通常のリンガー溶液中の糖度(5mM)は、赤血球症に対する阻害効果を有する。細胞外環?…
The authors have nothing to disclose.
この作品は、NIH補助金R15ES030140およびNSF補助金CBET1903568によってサポートされました。ラス工科大学とオハイオ大学化学・生体分子工学科からの資金援助も認められています。
96-well plate | Fisher Scientific | 12-565-331 | |
Annexin V Alexa Fluor 488 – apoptosis kit | Fisher Scientific | A10788 | Store at 4 °C |
BD FACSAria II flow cytometer | BD Biosciences | 643177 | |
CaCl2 | Fisher Scientific | C79-500 | |
Centrifuge | Millipore Sigma | M7157 | Model Eppendorf 5415C |
Confocal fluorescence microscopy | Zeiss, LSM Tek Thornwood | Model LSM 510, Argon laser excited at 488 nm for taking images | |
Cover glasses circles | Fisher Scientific | 12-545-100 | |
Disposable round bottom flow cytometry tube | VWR | VWRU47729-566 | |
DMSO | Sigma-Aldrich | 472301-100ML | |
DPBS | VWR Life Science | SH30028.02 | |
Glucose monohydrate | Sigma-Aldrich | Y0001745 | |
HEPES Buffer (1 M) | Fisher Scientific | 50-751-7290 | Store at 4 °C |
Ionomycin calcium salt | EMD Milipore Corp. | 407952-1MG | Dissolve in DMSO to reach 2 mM. Store at -20 °C |
KCl | Fisher Scientific | P330-500 | |
MgSO4 | Fisher Scientific | M65-500 | |
Microcentrifuge tube | Fisher Scientific | 02-681-5 | |
NaCl | Fisher Scientific | S271-500 | |
Plain glass microscope slides | Fisher Scientific | 12-544-4 | |
Synergy HFM microplate reader | BioTek | ||
Whole blood in ACD | Zen-Bio | Store at 4 °C and warm to 37 °C prior to use |