Here we present a protocol for in vivo augmentation of gut-homing regulatory T cell induction. In this protocol, dendritic cells are engineered to locally produce high concentrations of the active vitamin D (1,25-dihydroxyvitamin D or 1,25[OH]2D) and the active vitamin A (retinoic acid or RA) de novo.
Inflammatory bowel disease (IBD) is an inflammatory chronic disease in the gastrointestinal tract (GUT). In the United States, there are approximately 1.4 million IBD patients. It is generally accepted that a dysregulated immune response to gut bacteria initiates the disease and disrupts the mucosal epithelial barrier. We recently show that gut-homing regulatory T (Treg) cells are a promising therapy for IBD. Accordingly, this article presents a protocol for in vivo augmentation of gut-homing Treg cell induction. In this protocol, dendritic cells are engineered to produce locally high concentrations of two molecules de novo, active vitamin D (1,25-dihydroxyvitamin D or 1,25[OH]2D) and active vitamin A (retinoic acid or RA). We chose 1,25(OH)2D and RA based on previous findings showing that 1,25(OH)2D can induce the expression of regulatory molecules (e.g., forkhead box P3 and interleukin-10) and that RA can stimulate the expression of gut-homing receptors in T cells. To generate such engineered dendritic cells, we use a lentiviral vector to transduce dendritic cells to overexpress two genes. One gene is the cytochrome P450 family 27 subfamily B member 1 that encodes 25-hydroxyvitamin D 1α-hydroxylase, which physiologically catalyzes the synthesis of 1,25(OH)2D. The other gene is the aldehyde dehydrogenase 1 family member A2 that encodes retinaldehyde dehydrogenase 2, which physiologically catalyzes the synthesis of RA. This protocol can be used for future investigation of gut-homing Treg cells in vivo.
Inflammatory bowel disease (IBD) is an inflammatory chronic disease in the gastrointestinal tract (GUT). In the United States, there are approximately 1.4 million IBD patients. It is generally accepted that a dysregulated immune response to gut bacteria initiates the disease and disrupts the mucosal epithelial barrier1,2. For this reason, currently available U.S. Food and Drug Administration (FDA)-approved drugs inhibit the functions of inflammatory mediators or block the homing of immune cells into the gut. However, the inflammatory mediators and immune cells that are targeted are also necessary for immune defenses. As a result, the inflammatory mediator inhibitors compromise systemic immune defense and the immune cell homing blockers weaken gut immune defense, both of which can lead to severe consequences3,4. In addition, the immune cell homing blockers can also block the homing of regulatory T (Treg) cells into the gut and hence can worsen the already compromised gut immune tolerance in IBD patients. Furthermore, blocking of Treg cell homing into the gut may also lead to systemic immune suppression due to the accumulation of Treg cells in the blood5. Finally, inhibitors and blockers function transiently and, thereby, require frequent administrations. Frequent administration of these inhibitors and blockers may further exacerbate the untoward side effects.
Recently, we proposed a novel strategy that can potentially mitigate or even eliminate the side effects associated with current drugs for IBD treatment6. This strategy augments the induction of gut-homing Treg cells in peripheral lymphoid tissues6. The rationale of this strategy is that gut-homing Treg cells specifically home to the gut and hence will not compromise systemic immune defenses. In addition, since Treg cells can potentially form memory7,8, gut-homing Treg cells can potentially provide a stable control of the chronic gut inflammation in IBD patients and, thereby, treatment should not need to be administered as frequently. Furthermore, since this strategy augments the induction of gut-homing Treg cells in vivo, it does not have the concern of in vivo instability in a highly proinflammatory environment that is associated with adoptive transfer of in vitro generated Treg cells9,10. In this regard, in vitro generated Treg cells are one of the proposed strategies for the treatment of autoimmune diseases11,12,13 and transplant rejection14,15. Finally, in this strategy, dendritic cells (DCs) are engineered to produce locally high concentrations of two molecules de novo: active vitamin D (1,25-dihydroxyvitamin D or 1,25[OH]2D) and active vitamin A (retinoic acid or RA). We chose 1,25(OH)2D and RA because 1,25(OH)2D can induce the expression of regulatory molecules (e.g., forkhead box P3 [foxp3] and interleukin-10 [IL-10])16,17 and that RA can stimulate the expression of gut-homing receptors in T cells18. Because both 1,25(OH)2D and RA can also tolerize DCs28,29, we reason that the engineered DCs will be stably maintained in a tolerogenic status in vivo and hence circumvent the in vivo instability concerns that are associated with in vitro generated tolerogenic DCs (TolDCs)19,20,21. In this respect, TolDCs are also one of the proposed strategies for in vivo augmentation of Treg cell functions19,20,21. To support our reasoning, we have shown that the engineered DCs, upon in vivo delivery, can augment the induction of gut-homing Treg cells in peripheral lymphoid tissues6.
An additional advantage of our proposed strategy is that 1,25(OH)2D also has other functions that can potentially benefit IBD patients. These other functions include the ability of 1,25(OH)2D to stimulate the secretion of antimicrobials22 and to suppresses carcinogenesis23. Infections and cancers are frequently associated with IBD24,25.
To generate the DCs that can produce locally high concentrations of both 1,25(OH)2D and RA de novo, we use a lentiviral vector to engineer DCs to overexpress two genes. One gene is the cytochrome P450 family 27 subfamily B member 1 (CYP27B1) that encodes 25-hydroxyvitamin D 1α-hydroxylase (1α-hydroxylase), which physiologically catalyzes the synthesis of 1,25(OH)2D. The other gene is the aldehyde dehydrogenase 1 family member A2 (ALDH1a2) that encodes retinaldehyde dehydrogenase 2 (RALDH2), which physiologically catalyzes the synthesis of RA6.
Because in vivo augmentation of gut-homing Treg cell induction is potentially important in the treatment of IBD, in the following protocol we will detail the procedures for the generation of the 1α-hydroxylase-RALDH2-overexpressing DCs (DC-CYP-ALDH cells) that can be used for the future investigation of gut-homing Treg cells in vivo.
All in vivo animal study protocols were reviewed and approved by the Loma Linda University Institutional Animal Care and Use Committee (IACUC) as well as the Animal Care and Use Review Office (ACURO) of the US Army Medical Research and Materiel Command (USAMRMC) of the Department of Defense.
1. Preparation of the Lentivirus that Expresses both 1α-hydroxylase and RALDH2 (lenti-CYP-ALDH Virus)
2. Generation of Bone Marrow Derived DCs (BMDCs)
3. Transduction of DCs with lenti-CYP-ALDH Virus to Generate DC-CYP-ALDH Cells
4. Evaluation of the Overexpressed 1α-hydroxylase and RALDH2 in DC-CYP-ALDH Cells
DC-CYP-ALDH cells expressed significantly increased amount of 1α-hydroxylase. To determine whether DC-CYP-ALDH cells generated from BMDCs expressed a significantly increased amount of 1α-hydroxylase, BMDCs were transduced with the lenti-CYP-ALDH virus to produce bone-marrow-derived DC-CYP-ALDH cells (BMDC-CYP-ALDH cells). Subsequently, the BMDC-CYP-ALDH cells were examined for the expression of 1α-hydroxylase by FACS. Our data showed that the BMDC-CYP-ALDH cells, when compared to the parental BMDCs, displayed enhanced expression of the 1α-hydroxylase (Figure 1A). We also determined the enzymatic activity of the 1α-hydroxylase in the BMDC-CYP-ALDH cells. To do so, 1.0 x 106 BMDC-CYP-ALDH cells in 2 mL of CM-10-R cell culture medium were added into 12 well culture plates. 25(OH)D was then added to the cell culture at the final concentration of 2.5 μM. The cells were cultured at 37 ˚C and 5% CO2 for 24 h and the supernatants were harvested for the measurement of 1,25(OH)2D using a radioimmunoassay (RIA). Our data showed that 1,25(OH)2D concentrations in the culture supernatants of the BMDC-CYP cells (BMDCs transduced with lenti-CYP-GFP virus) and the BMDC-CYP-ALDH cells were each approximately 20x higher than those of the parental BMDCs and the BMDC-ALDH cells (BMDCs transduced with lenti-ALDH virus) (Figure 1B).
DC-CYP-ALDH cells expressed significantly increased amount of RALDH2. To determine whether BMDC-CYP-ALDH cells expressed a significantly increased amount of RALDH2, a RALDH2 substrate was added into the cell cultures in the presence or absence of the RALDH2 inhibitor diethylaminobenzaldehyde (DEAB) (15 µM). The fluorescent product retained inside the cells was analyzed by FACS. Our data showed that mean fluorescence intensities (MFIs) of the BMDC-CYP-ALDH cells were approximately 6x higher than those of the parental BMDCs, suggesting that the BMDC-CYP-ALDH cells, when compared to the parental BMDCs, expressed significantly enhanced RALDH2 enzymatic activity (Figure 2A,B).
DC-CYP-ALDH cells augmented the induction of foxp3+CCR9+ gut-homing Treg cells in vitro. To investigate whether DC-CYP-ALDH cells were able to augment the induction of gut-homing Treg cells in vitro, we transduced DC2.4 cells (a bone marrow-derived DC line26,27,28,29), with lenti-CYP-ALDH virus and generated DC2.4-CYP-ALDH cells. Subsequently, we determined whether the DC2.4-CYP-ALDH cells were able to augment the induction of gut-homing Treg cells in vitro. Accordingly, naive CD4+ T cells were purified from C57BL/6 mice. Purified naive CD4+ T cells at 5 x 105 cells/well were then cocultured with either the parental DC2.4 cells (1 x 105 cells/well) or the DC2.4-CYP-ALDH cells (1 x 105 cells/well) in 24 well culture plates in a serum-free medium in the presence of an anti-CD3 monoclonal antibody (5 µg/mL) and recombinant human IL-2 (50 U/mL). In addition, 25(OH)D and retinol at various concentrations were also added into the cultures. The cells were incubated at 37 ˚C and 5% CO2. Five days later, the cells were analyzed by FACS for the expressions of foxp3 and c-c chemokine receptor type 9 (CCR9). Our data showed that in the presence of the substrates, the DC2.4 cells did not significantly change the abundance of foxp3+CCR9+ cells in the CD4+ T cell populations (Figure 3A,B). In contrast, the DC2.4-CYP-ALDH cells significantly enhanced the abundance of foxp3+CCR9+ cells among CD4+ T cells. In addition, the more 25(OH)D added, the greater the ability of the DC2.4-CYP-ALDH cells to increase the abundance of foxp3+CCR9+ cells among CD4+ T cells. Therefore, our data support that the DC-CYP-ALDH cells can augment the induction of gut-homing Treg cells in vitro.
DC-CYP-ALDH cells augmented the induction of foxp3+CCR9+ gut-homing Treg cells in vivo. To determine whether DC-CYP-ALDH cells could augment the induction of gut-homing Treg cells in vivo, we intraperitoneally administered one of the following cells into Balb/c mice: the parental DC2.4 cells, the DC2.4-CYP cells (DC2.4 cells transduced with lenti-CYP-GFP virus), and the DC-2.4-CYP-ALDH cells. Four days after the cell administration, mesenteric lymph nodes were examined by FACS (Figure 4A). Our data showed that the DC2.4-CYP-ALDH cells, when compared to the controls, significantly increased the abundance of foxp3+CCR9+ cells among CD3+ T cells (Figure 4B,C). Based on these results, we conclude that the DC-CYP-ALDH cell administration significantly augments the induction of foxp3+CCR9+ T cells in peripheral lymphoid tissues.
Figure 1: DC-CYP-ALDH cells expressed significantly increased amount of 1α-hydroxylase. (A) BMDC-CYP-ALDH cells were generated and analyzed by FACS. A representative FACS plot shows the expression of 1α-hydroxylase in the parental BMDCs and the BMDC-CYP-ALDH cells (gated on live cells). (B) 1α-hydroxylase substrate (i.e., 25(OH)D) was added into the DC cultures. 24 h later, the supernatants were collected and 1,25(OH)2D concentrations were measured. The data show concentrations of 1,25(OH)2D in the cultures of the parental BMDCs, the BMDC-CYP cells, the BMDC-ALDH cells, and the BMDC-CYP-ALDH cells. **p < 0.01. ANOVA test. n = 4. This figure is adapted from Xu et al.6. Copyright 2019. The American Association of Immunologist, Inc. Please click here to view a larger version of this figure.
Figure 2: DC-CYP-ALDH cells expressed significantly increased amount of RALDH2. (A) BMDC-CYP-ALDH cells were generated and analyzed as described in the protocol. Representative overlaid FACS plots show the BODIPY aminoacetate fluorescence in the BMDCs and the BMDC-CYP-ALDH cells in the presence (+DEAB) or absence (-DEAB) of the RALHD2 inhibitor diethylaminobenzaldehyde (DEAB). (B) Mean fluorescence intensities (MFIs) of BODIPY aminoacetate in the BMDCs and the BMDC-CYP-ALDH cells in the absence of DEAB. *p < 0.05; t-test; n = 4. This figure is adapted from Xu et al.6. Copyright 2019. The American Association of Immunologist, Inc. Please click here to view a larger version of this figure.
Figure 3: DC-CYP-ALDH cells augmented the induction of foxp3+CCR9+ gut-homing Treg cells in vitro. (A) CD4+ naive T cells were isolated from C57BL/6 mouse spleens. The CD4+ T cells were then activated in cultures by an anti-CD3 mAb (5 µg/mL) in the presence of either the parental DC2.4 cells or the DC2.4-CYP-ALDH cells. Additionally, the cultures were added with the indicated concentrations of 25(OH)D and retinol. Five days later, the cells were collected and analyzed by FACS for the expressions of foxp3 and CCR9 in CD3+CD4+ T cell population. Representative FACS plots show the expressions of foxp3 and CCR9 in the CD3+CD4+ T cell populations. (B) Cumulative data from (A). *p < 0.05; ANOVA test; n = 4. This figure is adapted from Xu et al.6. Copyright 2019. The American Association of Immunologist, Inc. Please click here to view a larger version of this figure.
Figure 4: DC-CYP-ALDH cells augmented the induction of foxp3+CCR9+ gut-homing Treg cells in vivo. (A) Balb/c mice intraperitoneally (i.p.) received one of the following DC transfers (Transfer): no DC transfer (No transfer), parental DC2.4 cells, DC2.4-CYP cells, and DC2.4-CYP-ALDH cells. Four days later, mesenteric lymph nodes (MLNs) were analyzed by FACS. (B) Representative FACS plots show the expressions of foxp3 and CCR9 in CD3+ T cell population. (C) Cumulative data from (B) show the percentage of foxp3+CCR9+ cells in the CD3+ T cell population. Cells were gated on CD3+ T cells for all the analyses. Where applicable, the data presented are means ± SEM. *p < 0.05; ANOVA test; n = 4–6. This figure is adapted from Xu et al.6. Copyright 2019. The American Association of Immunologist, Inc. Please click here to view a larger version of this figure.
In this article we describe the use of DC-CYP-ALDH cells, for augmenting the induction of gut-homing Treg cells in peripheral lymphoid tissues. Our data have shown that the DC-CYP-ALDH cells can synthesize locally high concentrations de novo of both 1,25(OH)2D and RA in vitro in the presence of corresponding substrates (i.e., 25[OH]D and retinol, respectively). Because sufficient blood concentrations of 25(OH)D and retinol can be easily achieved through vitamin D and A supplementations respectively in patients who have deficiencies30,31, we reason that the DC-CYP-ALDH cells can augment the induction of gut-homing Treg cells in peripheral lymphoid tissues when normal blood concentrations of 25(OH)D and retinol are present. To support this reasoning, our data demonstrates that in normal healthy animals that do not have vitamin D and vitamin A deficiencies, the DC-CYP-ALDH cells augment the induction of Treg cells that express both regulatory molecules (i.e., foxp3 and IL-10) and a gut-homing receptor (i.e., CCR9). Therefore, this technology can be used for further investigation of gut-homing Treg cells for the treatment of IBD.
One critical step of this protocol is the production of lenti-CYP-ALDH virus with high titers. The preferred virus titers should be 108–109 TUs/mL. A high titer of the lenti-CYP-ALDH virus is necessary for a high transduction efficiency in DCs.
Another critical step of this protocol is the transduction efficiency in DCs. Because DC-CYP-ALDH cells are not tolerized in vitro in this technology, it is essential that the transduction rate be more than 90% to ensure that the DC-CYP-ALDH cells can efficiently augment the induction of gut-homing Treg cells in vivo. In addition, the DC-CYP-ALDH cells can be further purified by FACS before in vivo administration32.
A unique advantage of this protocol is that the DC-CYP-ALDH cells do not need to be tolerized in vitro before in vivo administration. It is expected that the DC-CYP-ALDH cells, as a result of the combined actions of 1,25(OH)2D and RA, will be maintained in a tolerogenic status in vivo because both 1,25(OH)2D and RA have been shown to tolerize DCs33,34. Therefore, we anticipate that the DC-CYP-ALDH cells will not have instability concerns in an in vivo proinflammatory environment.
Currently, we have only demonstrated that DC-CYP-ALDH cells can increase the frequency (number) of gut-homing Treg cells in peripheral lymphoid tissues and intestines6. Consequently, regulatory function in the intestines as a whole is enhanced because the percent of Treg cells in the intestines is increased. Figure 4 shows that when compared to those with control treatments, intraperitoneal treatment with DC-CYP-ALDH cells significantly increased the percentage of CCR9+foxp3+ Treg cells in the mesenteric lymph nodes, meaning that more Treg cells in the mesenteric lymph nodes are able to specifically home into the intestinal tissues. Figure 4 further shows that most foxp3+ T cells in mesenteric lymph nodes are negative for CCR9 and therefore do not have gut-homing capacity. However, whether DC-CYP-ALDH cells can also enhance the regulatory function of each Treg cell per se (such as enhanced expression levels of foxp3 and/or IL-10) requires further investigation.
The reagents and materials described here are for animal studies only. However, the protocol is applicable for human studies by using corresponding human reagents and materials, except that DCs will be generated from peripheral blood monocytes in humans. The ultimate goal of this protocol is the generation of clinical grade DC-CYP-ALDH cells for the treatment of IBD.
The authors have nothing to disclose.
This work was supported by the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program under Award No. W81XWH-15-1-0240 (XT). Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the Department of Defense. This work was also partially supported by Research Innovation Grants from the Department of Medicine at Loma Linda University (681207-2967 [XT and GG], 681205-2967 [XT], and 325491 [DJB]).
10 mL syringes | ThermoFisher Scientific | Cat# 03-377-23 | |
100 mm x 20 mm culture dishes | Sigma-Aldrich | Cat# CLS430167 | |
12-well culture plates | ThermoFisher Scientific | Cat# 07-200-82 | |
150 mm x 25 mm culture dishes | Sigma-Aldrich | Cat# CLS430559 | |
25-hydroxycholecalciferol (25[OH]D) | Sigma-Aldrich | Cat# H4014 | |
293T cells | ATCC | CRL-3216 | |
2-mercaptoethanol | ThermoFisher Scientific | Cat#: 21985023 | |
6-well culture plates | ThermoFisher Scientific | Cat# 07-200-83 | |
ALDEFLUOR kit | Stemcell Technologies | Cat# 01700 | |
Anti-CYP27B1 | Abcam | Cat# ab95047 | |
BD FACSAria II | BD Biosciences | N/A | |
CaCl2 | Sigma-Aldrich | Cat# C1016 | |
CM-10-D cell culture medium | DMEM medium containing 10% fetal bovine serum (FBS), 100 U/ml penicillin/streptomycin, 0.055 mM 2-mercaptoethanol (2-ME), 1 mM sodium pyruvate, 0.1 mM nonessential amino acid, and 2 mM L-glutamine. | ||
CM-10-R cell culture medium | RPMI 1640 medium (no glutamine) containing 10% fetal bovine serum (FBS), 100 U/ml penicillin/streptomycin, 0.055 mM 2-mercaptoethanol (2-ME), 1 mM sodium pyruvate, 0.1 mM nonessential amino acid, and 2 mM L-glutamine. | ||
CM-4-D cell culture medium | DMEM medium containing 4% fetal bovine serum (FBS), 100 U/ml penicillin/streptomycin, 0.055 mM 2-mercaptoethanol (2-ME), 1 mM sodium pyruvate, 0.1 mM nonessential amino acid, and 2 mM L-glutamine. | ||
Corning bottle-top vacuum filters, 0.22 mM, 500 mL | Sigma-Aldrich | Cat# CLS430513 | |
Corning bottle-top vacuum filters, 0.45 mM, 500 mL | Sigma-Aldrich | Cat# CLS430514 | |
Dissecting scissor | ThermoFisher Scientific | Cat# 08-940 | |
DMEM medium | ThermoFisher Scientific | Cat# 11960044 | |
Fetal bovine serum | ThermoFisher Scientific | Cat# 16000044 | |
Forceps | ThermoFisher Scientific | Cat# 22-327379 | |
Gibco ACK lysing buffer | ThermoFisher Scientific | Cat# A1049201 | |
Glycerol | Sigma-Aldrich | Cat# G5516 | |
Goat anti-rabbit IgG | Abcam | Cat# ab205718 | |
HEPES | Millipore | Cat# 391340 | |
Lenti-CYP-ALDH | Custom-made | 1.6-kb mouse CYP27B1 and ALDH1a2 cDNAs were amplified by PCR using a plasmid containing the CYP27B1 cDNA and a plasmid containing the ALDH1a2 cDNA respectively (GeneCopoeia). The amplified CYP27B1 cDNA fragment with a 5' KOZAK ribosome entry sequence was cloned into the pRRL-SIN.cPPt.PGKGFP.WPRE lentiviral vector (Addgene). The resulting construct was designated as lenti-CYP-GFP. The amplified ALDH1a2 cDNA fragment was cloned into the lenti-CYP-GFP to replace the GFP and was designated as lenti-CYP-ALDH. This bicistronic plasmid expresses CYP27B1 controlled by SFFV promoter and ALDH1a2 controlled by PGK promoter. | |
L-glutamine | ThermoFisher Scientific | Cat#25030081 | |
Lipopolysaccharide | Sigma-Aldrich | Cat# L3755 | |
Murine GM-CSF | Peprotech | Cat# 315-03 | |
Murine IL-4 | Peprotech | Cat# 214-14 | |
Na2HPO4 | Sigma-Aldrich | Cat# NIST2186II | |
NaCl | Sigma-Aldrich | Cat# S9888 | |
Needles | ThermoFisher Scientific | Cat# 14-841-02 | |
Nonessential Amino Acids | ThermoFisher Scientific | Cat#: 11140076 | |
pCMVR8.74 | Addgene | Plasmid# 22036 | |
Penicillin/Streptomycin | ThermoFisher Scientific | Cat#15140148 | |
Phoshate Balanced Solution (PBS) | ThermoFisher Scientific | Cat#: 20012027 | |
PMD2G | Addgene | Plasmid# 12259 | |
Polypropylene tube, 15 mL | ThermoFisher Scientific | Cat# AM12500 | |
Polypropylene tube, 50 mL | ThermoFisher Scientific | Cat# AM12502 | |
Protamine sulfate | Sigma-Aldrich | Cat# P3369 | |
Rabbit polycloncal IgG isotype control | Abcam | Cat# ab171870 | |
Radioimmunoassay for 1,25(OH)2D measurement | Heartland Assays | ||
RPMI 1640 medium, no glutamine | ThermoFisher Scientific | Cat# 21870076 | |
Sodium pyruvat | ThermoFisher Scientific | Cat#: 11360070 | |
Sorvall Legend XTR Centrifuge | ThermoFisher Scientific | Cat# 75004521 | |
Sterile Cell strainers, 40 mm | ThermoFisher Scientific | Cat# 07-201-430 | |
Sterile storage bottles, 500 mL | ThermoFisher Scientific | Cat# CLS431432 |