This paper describes protocols of evaluating Tfh and GC B response in mouse model of influenza virus infection.
T Follicular Helper (Tfh) cells are an independent CD4+ T cell subset specialized in providing help for germinal center (GC) development and generation of high-affinity antibodies. In influenza virus infection, robust Tfh and GC B cell responses are induced to facilitate effective virus eradication, which confers a qualified mouse model for Tfh-associated study. In this paper, we described protocols in detection of basic Tfh-associated immune response during influenza virus infection in mice. These protocols include: intranasal inoculation of influenza virus; flow cytometry staining and analysis of polyclonal and antigen-specific Tfh cells, GC B cells and plasma cells; immunofluorescence detection of GCs; enzyme-linked immunosorbent assay (ELISA) of influenza virus-specific antibody in serum. These assays basically quantify the differentiation and function of Tfh cells in influenza virus infection, thus providing help for studies in elucidating differentiation mechanism and manipulation strategy.
In the recent decade, numerous studies have been focused on the newly identified CD4+ T cell subset, Tfh cell subset, for its essential roles in germinal center (GC) B development. B cell lymphoma 6 (Bcl6), which is mainly considered as a gene repressor, is the lineage-defining factor of Tfh cells for the evidence that ectopic expression of Bcl6 is sufficient to drive Tfh differentiation while deficiency of Bcl6 results in vanished Tfh differentiation1,2,3. Unlike other CD4+ T helper subsets performing their effector function by migration to the sites of inflammation, Tfh cells provide the B cell help mainly in the B cell follicular zone of spleen and lymph node. Co-stimulatory molecules ICOS and CD40L, play significant roles in the interaction between Tfh and GC B cells. During Tfh differentiation, ICOS transmits necessary signals from cognate B cells and also acts as a receptor receiving migration signals from bystander B cells for B cell zone localization4,5. CD40L is a mediator of signals from Tfh cells for B cells proliferation and survival6. Another factor playing the similar role as CD40L is the cytokine IL21, which is mainly secreted by Tfh cells. IL21 directly regulates GC B cells development and production of high-affinity antibodies, but its role in Tfh differentiation is still controversial7,8. PD-1 and CXCR5, which are now most frequently used in identifying Tfh cells in flow cytometry analysis, also play significant roles in the differentiation and function of this subset. CXCR5 is the receptor of B cell follicular chemokine and mediates the localization of Tfh cells in B cell follicles9. PD-1 is now identified to not only have the follicular guidance function but also transmit critical signals in the process of GC B cells affinity maturation10. Based on these findings, evaluating the expression of these molecules could basically reflect the maturation and function of Tfh cells.
GC is an induced transient microanatomical structure in secondary lymphoid organs and highly dependent on Tfh cells, thus being a perfect readout to evaluate Tfh response. In GC, after receiving signals mediated by cytokines and co-stimulatory molecules, B cells are subject to class switching and somatic hypermutation to generate high-affinity antibodies11. Differential antibody class switching occurs in differential cytokine niche, in which IL4 and IL21 induce IgG1 class switching while IFNγ induces IgG2 class switching12. Plasma cells are the producers of secreted antibodies and are terminally differentiated cells. Like Tfh cells, development of B cells in GC is associated with dynamic expression of many significant molecules. Based on the current study, GC B cells can be identified as B220+PNA+Fas+ or B220+GL7+Fas+ cells and plasma cells, compared to their precursors, downregulate expression of B220 and upregulate CD138 expression13. What is more, both of these characteristics can be detected in flow cytometry and immunofluorescence analysis, thus being appropriate evaluation of GC response.
Robust cellular and humoral responses are induced in influenza virus infection, with Tfh and Th1 cells dominating CD4+ T cell response14, which makes it a perfect model for Tfh cells differentiation study. Influenza A/Puerto Rico/8/34 H1N1(PR8), which is a commonly used mouse-adapted strain, is frequently used in this study14,15,16. Here, we describe some basic protocols of Tfh study-relevant assay in influenza virus infection: 1) intranasal inoculation of PR8 virus; 2) antigen-specific Tfh cells, GC B and plasma cells and IL21 detection with flow cytometry; 3) histological visualization of GC; 4) detection of antigen-specific antibody titer in serum with ELISA. These protocols provide the necessary techniques for new researchers in Tfh-associated study.
Animal experiments were approved by the Institutional Animal Care and Use Committee of Institut Pasteur of Shanghai, China. All the experiments were performed based on the Institutional Animal Care and Use Committee-approved animal protocols.
NOTE: Virus infection of mice and isolation of organs should be performed under ABSL2 condition.
1. Inoculation of PR8 influenza virus and recording of mice weight
2. Isolation of lymphocytes from spleen and mediastinal lymph node (mLN)
3. Immunostaining of Polyclonal Tfh cells with PD-1 and CXCR5
4. Immunostaining of PR8 influenza virus NP-specific Tfh cells
NOTE: This protocol of staining NP-specific Tfh cells is from previous studies15,17.
5. Immunostaining of Bcl6 in polyclonal Tfh cells
6. Intracellular staining of IL21
7. GC B and plasma cells staining
8. Isolation of serum from blood
9. Assay of HA-specific antibody titer with ELISA
10. Histology
Characterization of mouse morbidity in influenza virus infection
After influenza virus infection, mice are less active and anorexic due to illness, which is reflected by severe weight loss, a commonly used symptom to monitor the mouse morbidity19. As shown in Figure 1a, PR8 virus-infected mice started to lose weight on day 6, reached the highest loss level on day 8 and returned to the initial level on day 10. As expected, weight loss was not observed all through the period in PBS-treated control mice. For in vivo symptoms, virus infection leads to robust lymphocytes expansion in the draining lymph node, mLN in this case. Therefore, significantly larger size of mLNs were observed in PR8 virus-infected mice than in control mice (Figure 1b). Taken together, these mice all showed expected symptoms and were qualified for the subsequent Tfh-associated immune response study.
Detection of Tfh differentiation and function-associated molecules
To analyze Tfh differentiation, mice were sacrificed on day 5, 7, 10 and 14 after infection and mLNs or spleens were isolated for flow cytometry analysis. Figure 2a and Figure 2b show the Tfh population gating strategy, with Tfh gated as PD-1hi CXCR5hi cells and non-Tfh as PD-1lowCXCR5low cells. With this gating strategy, the kinetics of Tfh differentiation during influenza virus infection were assayed. As shown in Figure 2c, Tfh differentiation initialized at day 5 and peaked at day 10. So we took samples of day 10 for further analysis. As shown in Figure 3a, robust Tfh cell differentiation was induced in influenza virus-infected mice compared with control mice. To analyze Influenza virus-specific Tfh cells, fluorochrome-labeled IAbNP311–325 MHC class II tetramers (NP311-325) were added in the polyclonal Tfh cells staining panel (Table 1). Both in mLNs and spleens from influenza virus-infected mice, NP311-325-specific CD4+ T cells were significantly induced and NP311-325-specific Tfh cells could be analyzed by addition of PD-1 and CXCR5 into analysis(Figure 3e). Because of essential roles of Bcl6 in Tfh differentiation, Bcl6+CXCR5+ cells can also represent the Tfh population. Consistently, Tfh cells identified with this strategy were also induced robustly (Figure 3b). We further analyzed expression of Bcl6 in Tfh and non-Tfh cells. As shown in Figure 3c, higher expression of Bcl6 in Tfh cells than that in non-Tfh cells indicates successful Bcl6 staining. With similar strategy, ICOS, another Tfh-associated molecule was also analyzed (Figure 3d). Due to the specialized role of Tfh cells in providing help for B cells, assay of the expression of IL21, which is secreted mainly by Tfh cells and demonstrated to directly regulate B cells survival and proliferation, could reveal Tfh cells function to some extent. As shown in Figure 3f, intracellular staining of IL21 revealed that PR8 infection induced significantly higher production of this cytokine, with unstimulated cells as gating control. Taken together, these assays could reflect basic information of Tfh differentiation and provide the insights into the B cell-help ability.
Detection of GC B and plasma cells development and influenza virus-specific antibodies in serum
The main function of Tfh cells is to provide B cell help in GCs, in which antibody class switching and affinity maturation occur. So GC B development could indirectly reflect differentiation and function of Tfh cells. GC B cells could be gated as B220+PNA+Fas+ cells (Figure 2d). Through this gating strategy, we assayed the kinetics of GC B cell response and found that GC B response started at day 10 and continued to increase at day 14 (Figure 2e). Comparison between PR8 virus-infected and control mice showed robust GC B were induced both in mLN and spleen after influenza virus infection(Figure 4a), which is consistent with the induced Tfh differentiation in PRB virus-infected mice. In addition, Immunofluorescence staining with IgD and PNA provides visualized images indicating induced GC reaction (green areas) in PR8 virus-infected mice (Figure 4d). Plasma cells, identified as IgDlowCD138+ cells(Figure 2d), were also generated in PR8 virus-infected mice (Figure 4b). Previous studies have identified that IFNƳ and IL21 could be secreted from both Th1 and Tfh cells in virus infection and induce IgG2 and IgG1 class switching, respectively20. Figure 4c depicts the generation of influenza virus-specific antibody by ELISA assay of HA-specific IgM, total IgG, IgG1, IgG2b and IgG2C. Together, all of these assays reflect the Tfh-associated B cell responses in influenza virus infection.
Figure 1: Characterization of mouse morbidity. 8-week-old male mice were infected with 40 PFU of PR8 influenza virus by intranasal inoculation. Mice were weighed daily for 10 days (a) and mLNs were isolated on d.p.i 10 (b). The error bars in (a) represent the mean ± SD. n = 4 mice per group. Please click here to view a larger version of this figure.
Figure 2: Gating strategy of Tfh cells and GC B cells. (a) Lymphocytes are defined by FSC-A and SSC-A, and cell singlets are gated with FSC-A, FSC-H and SSC-A, SSC-W. (b) After gating in CD4+ T cells, surface markers CD62L and CD44 are used to distinguish the naïve T cells (CD44loCD62Lhi) and activated T cells (CD44hiCD62Llo). Polyclonal Tfh cells can be gated from activated T cells as PD-1hi CXCR5hi population, conversely, non-Tfh cells as PD-1lowCXCR5low. PR8 virus-specific Tfh cells are defined as CD4+CD44+ NP311-325 tetramer+PD-1hi CXCR5hi cells. (c,e) Kinetics of Tfh frequency in activated cells (c) and GC B frequency in B220+ cells (e). (d) GC B cells are gated as B220+ PNA+FAS+ cells, and plasma cells are IgD–CD138+ cells. Please click here to view a larger version of this figure.
Figure 3: Analysis of Tfh differentiation in PR8 virus-infected mice. Mice were sacrificed on d.p.i 10 and mLNs and spleens were isolated for Tfh differentiation analysis. (a) Tfh percentage in mLNs and spleens in PR8 virus-infected mice and PBS-treated mice (upper panel). The statistics of Tfh cells (lower panel). (b) The intracellular staining of Bcl6 in CD4+CD44hi T cells (upper panel). The statistics of Bcl6+CXCR5+ cells (lower panel). (c) Bcl6 and (d) ICOS expression in Tfh (line-red) and non-Tfh cells (solid-gray). (e) Gating of NP311-325-specific CD4+ T cells in mLNs and spleens of PR8 virus-infected and PBS-treated mice (left panel). The percentage of PR8 virus-specific Tfh cells in mLNs and spleens (middle panel). “Isotype” indicates staining with irrelevant tetramer control. The statistics of NP311-325-specific CD4+ T cells (right panel). (f) Intracellular staining of IL-21 in splenic CD4+ T cells from PR8 virus-infected and PBS-treated mice, the unstimulation shown as control (left). The statistics of IL-21 staining (right). **P < 0.01, ***P < 0.001 and **** P < 0.0001 (two-tailed Student’s t-test). The error bars represent the mean ± SD. n = 3 mice per group. Please click here to view a larger version of this figure.
Figure 4: Analysis of GC B cell-associated response in PR8 virus-infected mice. Mice were sacrificed on d.p.i 10 and the mLNs and spleens were isolated for analysis. (a) The percentage of GC B cells (upper panel). The statistics of GC B cells (lower panel). (b) The percentage of plasma cells (upper panel). The statistics of plasma cells (lower panel). (c) Quantification of PR8 virus HA-specific IgG, IgM, IgG1, IgG2b and IgG2c in the serum (d.p.i 14) of PR8 virus-infected mice and PBS-treated mice. (d) Confocal microscopy of B cell follicles (IgD+, Red) and GCs (PNA+, Green) in the spleen samples of PR8 virus-infected mice and PBS-treated mice (d.p.i 10). *P < 0.5, **P < 0.01, and ***P < 0.001 (two-tailed Student's t-test). The error bars represent the mean ± SD. n = 3 mice per group. Please click here to view a larger version of this figure.
surface marker | fluorochrome | clone | volume per sample(ul) |
CD4 | Percp-eFluor 710 | GK1.5 | 0.2 |
CD44 | eVolve 605 | IM7 | 0.2 |
CD62L | FITC | MEL-14 | 0.2 |
ICOS | BV421 | 7E.17G9 | 0.2 |
PD1 | PE/Cy7 | 29F.1A12 | 0.3 |
Streptavidin | PE | 0.2 |
Table 1: Surface marker (except for CXCR5) antibodies panel for staining Tfh cells (PD-1hiCXCR5hi).
surface marker | fluorochrome | clone | volume per sample(ul) |
CD4 | Percp-eFluor 710 | GK1.5 | 0.2 |
CD44 | FITC | IM7 | 0.2 |
PD1 | PE/Cy7 | 29F.1A12 | 0.3 |
Streptavidin | BV421 | 0.5 |
Table 2: Surface marker antibodies (except for CXCR5) panel for staining Bcl6 in Tfh cells.
surface marker | fluorochrome | clone | volume per sample(ul) |
CD4 | Percp-eFluor 710 | GK1.5 | 0.2 |
CD44 | FITC | IM7 | 0.2 |
Table 3: Surface marker antibodies panel for intracellular staining of IL21.
surface marker | fluorochrome | clone | volume per sample(ul) |
B220 | APC | RA3-6B2 | 0.2 |
IgD | eFluor 450 | 11-26c | 0.2 |
CD95 | PE/Cy7 | Jo2 | 0.3 |
PNA | FITC | 0.3 | |
CD138 | PE | 281-2 | 0.2 |
Table 4: Surface marker antibodies panel for staining GC B and plasma B cells.
Due to specialized roles in providing B-cell help for generating high-affinity antibodies, Tfh cells have been extensively studied in the mechanisms of differentiation and manipulation to provide new strategies for vaccine design. Influenza virus infection induces vigorous Tfh and GC B cells responses, thus being an appropriate model for this field of research. In this paper, we described protocols of influenza virus infection by intranasal inoculation, evaluation of Tfh-associated response by flow cytometry, immunofluorescence and ELISA. These assays will facilitate detection of Tfh differentiation, GC B development and influenza virus-specific antibodies and help researchers explore and identify new crucial molecules in the immune response.
In studies with influenza virus-infected mice models, weight loss is a commonly used indicator of mouse morbidity. The expected weight change kinetics in influenza virus-infected mice is as described in Figure 1a, which reflects the appropriate immune response induced in the mice. However, abnormal cases would regularly occur, in which the mice lose their weight or do not show any weight decline all through the observation period. According to our experiences, these mice would mostly bear abnormal lower or higher immune response, thus disrupting the experiment results. To avoid such variations, firstly mice used in the experiment should be sex and age-matched to guarantee the similar responsive ability to virus. Consistent virus titer for each mouse is also important21. The virus titer used in this protocol is 40 PFU. However, the virus titer to induce appropriate weight change kinetics in each lab could be variable due to the inconsistency in virus titer evaluation procedure and mouse strains used in the experiment. So we advise titration of virus titer for infection is necessary before immune response-relevant study.
In this protocol, we identified Tfh cells with frequently used markers PD-1, CXCR5 and the essential transcription factor Bcl6. Although both PD-1hiCXCR5hi and Bcl6+CXCR5+ cells could be denoted as Tfh cells, they represent different population and do not have the precursor-progeny relationship based on the fact that not all the PD-1hiCXCR5hi cells are Bcl6+ and not all the Bcl6+CXCR5hi cells are PD-1hiCXCR5hi. This phenotype could be explained by the heterogeneity of Bcl6 expression in Tfh cells22. ICOS, a critical molecule for both Tfh differentiation and migration should also be included in analysis of Tfh differentiation. In addition, other function-associated co-stimulatory molecules, such as OX40 and CD40L should also be detected for their expression level, though not included in this protocol. IL21 and IL4 are both Tfh-secreted cytokines playing roles in inducing IgG1 class switching. Protocol of detecting IL21 expression is described in this paper. However, due to the difficulty in detection of IL4 in Tfh cells, IL4-GFP reporter mice were used in previous studies23. In this protocol, we also used fluorochrome-labeled NP tetramers to detect NP311-325-specific Tfh cells. Nevertheless, the limit in the amount of NP311-325-specific Tfh cells confers the difficulty in further analysis. Therefore, adoptive transfer experiment of influenza hemagglutinin specific-TCR transgenic (Tg) CD4+ (TS-1) T cells, which could be isolated from TS-1 mice, is an alternative strategy in solving this problem24.
Here we identified GC B as B220+PNA+Fas+ cells in flow cytometry staining. An alternative marker combination strategy to define GC B as GL7hiFashi cells is also used in other papers14,16. We also use immunofluorescence to visualize GCs with combination of anti-IgD and PNA. Herein addition of CD3 antibody can help visualize Tfh cells, thus enabling study of the interaction between these two cell types10.
Given differentiation of Tfh cells is a multistage and multifactorial process, additional assay of other significant molecules at multiple time points is necessary to elucidate more detailed mechanism in Tfh differentiation. In addition, parameters detected here are also commonly used in other models18. Therefore, besides in influenza virus infection, protocols described here, especially the immunostaining part, can also provide instructions in Tfh-associated study with other models.
The authors have nothing to disclose.
We thank the staffs of flow cytometry facility, ABSL2 facility and SPF animal facility of Institut Pasteur of Shanghai for their technical help and advice. This work was supported by the following grants: Strategic Priority Research Program of the Chinese Academy of Sciences (XDB29030103), National Key R&D Program of China (2016YFA0502202), the National Natural Science Foundation of China (31570886).
Immunostaining of Tfh cells, NP-specific Tfh cells and Bcl-6 | |||
37% formaldehyde | Sigma | F1635 | |
Anti-CD16/32 mouse | Thermo Fisher Scientific | 14-0161-86 | |
APC-conjugated-IAbNP311-325 MHC class II tetramer | NIH | ||
Bcl-6 PE | Biolegend | 358504 | clone:7D1 |
Biotin-CXCR5 | Thermo Fisher Scientific | 13-7185-82 | clone: SPRCL5 |
CD4 Percp-eFluor 710 | Thermo Fisher Scientific | 46-0041-82 | clone:GK1.5 |
CD44 eVolve 605 | Thermo Fisher Scientifi | 83-0441-42 | clone:IM7 |
CD44 FITC | Thermo Fisher Scientifi | 11-0441-82 | clone:IM7 |
CD62L FITC | BD Pharmingen | 553150 | clone:MEL-14 |
ICOS BV421 | Biolegend | 564070 | clone:7E.17G9 |
PD1 PE/Cy7 | Biolegend | 135216 | clone:29F.1A12 |
Streptavidin BV421 | BD Pharmingen | 563259 | |
Streptavidin PE | BD Pharmingen | 554081 | |
Intracelluar staining of IL21 | |||
37% formaldehyde | Sigma | F1635 | |
anti-human IgG | Jackson ImmunoResearch Laboratories | 109-605-098 | |
Brefeldin A | Sigma | B6542 | |
human FCc IL-21 receptor | R&D System | ||
ionomycin | Sigma | I0634 | |
Live/Dead Fixable Aqua Dead Cell staining kit | Thermo Fisher Scientific | L34966 | |
PMA | Sigma | P1585 | |
Saponin | MP | 102855 | |
GC B and plasma cells staining | |||
B220 APC | Thermo Fisher Scientific | 17-0452-81 | clone:RA3-6B2 |
CD138 PE | BD Pharmingen | 561070 | clone:281-2 |
CD95 (FAS) PE/Cy7 | BD Pharmingen | 557653 | clone:Jo2 |
IgD eFluor 450 | Thermo Fisher Scientific | 48-5993-82 | clone:11-26c |
PNA FITC | Sigma | L7381 | |
Assay of HA-specific antibody titer with ELISA | |||
PR8-HA | Sino Biological | 11684-V08H | |
BSA | SSBC | ||
Goat anti mouse Ig (SBA Clonotyping System-HRP) | SouthernBiotech | 5300-05 | |
Goat anti mouse IgM (SBA Clonotyping System-HRP) | SouthernBiotech | 5300-05 | |
Goat anti mouse IgG1 (SBA Clonotyping System-HRP) | SouthernBiotech | 5300-05 | |
Goat anti mouse IgG2b (SBA Clonotyping System-HRP) | SouthernBiotech | 5300-05 | |
Goat anti mouse IgG2c (SBA Clonotyping System-HRP) | SouthernBiotech | 5300-05 | |
TMB Substrate Reagent Set | BD Pharmingen | 555214 | |
Histology | |||
Alexa Fluor 555-Goat-anti rat IgG | Life Technology | A21434 | |
anti-mouse IgD | Biolegend | 405702 | |
biotinylated PNA | Vector laboratories | B-1075 | |
dilute Alexa Fluor 488-streptavidin | Life Technology | S11223 | |
normal goat serum | SouthernBiotech | 0060-01 | |
Pro-long gold antifade reagent | Thermo Fisher Scientific | P3630 | |
STREPTAVIDIN/BIOTIN blocking kit | Vector laboratories | SP-2002 |