概要

使用同步加速器 X 射线微断层扫描技术,在剪切下对颗粒土壤的故障和相关的颗粒级机械性能进行可视化

Published: September 29, 2019
doi:

概要

该协议描述了在三轴压缩期间获取粒状土壤的高密度分辨率计算机断层扫描 (CT) 图像的过程,并将图像处理技术应用于这些 CT 图像,以探索正在装载的土壤。

Abstract

X射线成像技术与图像处理和分析技能的迅速发展,使得具有高空间分辨率的颗粒土壤的CT图像得以获取。基于这些CT图像,可以定量地研究颗粒运动学(即粒子平移和粒子旋转)、应变定位和颗粒间接触演化等颗粒尺度的机械行为。然而,这是不可接近使用传统的实验方法。本研究利用同步加速器X射线微断层扫描(μCT)对三轴压缩下粒状土壤样品的颗粒级机械特性进行了探索。该方法采用特制微型装载装置,在三轴试验期间对样品施加限制和轴向应力。该装置安装在同步辐射X射线断层扫描设置中,以便在测试的不同加载阶段收集样品的高精度分辨率CT图像,而不会对样品产生任何干扰。通过从宏观尺度提取信息(例如,来自三轴装置设置的样本边界应力和应变)和颗粒量程(例如,从 CT 图像中提取颗粒运动和接触交互),此过程提供了研究粒状土壤多尺度力学的有效方法。

Introduction

人们普遍认为,粒状土壤的宏观力学特性,如刚度、剪切强度和渗透性,对许多岩土结构(例如地基、斜坡和岩石填充水坝)至关重要。多年来,现场测试和常规实验室测试(例如,一维压缩测试、三轴压缩试验和渗透性测试)一直用于评估不同土壤中的这些特性。为工程目的,还制定了测试土壤机械性能的规范和标准。虽然对这些宏观规模的机械特性进行了深入的研究,但控制这些特性的颗粒级机械行为(例如,粒子运动学、接触相互作用和应变定位)对来自工程师和研究人员。原因之一是缺乏有效的实验方法来探索土壤的颗粒级机械性能。

到目前为止,对颗粒土壤颗粒尺度机械特性的大部分理解来自离散元素建模1(DEM),因为它能够提取颗粒尺度信息(例如,粒子运动学和粒子接触)力)。在早期使用 DEM 技术对粒度土壤机械行为建模的研究中,每个单个粒子都简单地由模型中的单个圆或球体表示。使用这种过度简化的粒子形状导致了粒子的过度旋转,从而降低了峰值强度行为2。为了达到更好的建模性能,许多研究者使用了滚动电阻模型3,4,5,6或不规则的粒子形状7,8。9101112在他们的 DEM 模拟.因此,对粒子运动行为有了更现实的理解。除了粒子运动学之外,DEM 还越来越多地用于研究颗粒接触相互作用和开发理论模型。然而,由于需要重现真实颗粒形状和使用复杂的接触模型,DEM 在建模具有不规则形状的颗粒土壤时需要极高的计算能力。

最近,光学设备和成像技术的发展(例如显微镜、激光辅助断层扫描、X射线计算机断层扫描(CT)和X射线微断层扫描(μCT))为实验检查粒状土壤的颗粒级机械性能。通过三轴试验前后土壤样品图像的采集和分析,在土壤微观结构13、14、15、16的调查中采用了这些设备和技术。 171819.最近,使用X射线CT或_CT的原位测试已越来越多地用于研究空隙比20、应变分布21、22、23、24的演化。粒子运动25、26、2728、 粒子间接触29、30、31和粒子粉碎32颗粒状土壤。在这里,”原位”意味着X射线扫描在装载的同时进行。与一般的 X 射线扫描不同,原位 X 射线扫描测试需要专门制造的装载设备来向土壤样品提供应力。结合装载装置和X射线CT或+CT装置,可以无损地采集不同测试装载阶段的样品CT图像。基于这些CT图像,可以获取粒状土壤行为的颗粒尺度观测。这些基于CT图像的粒子级观测结果对于验证数值发现和获得颗粒状土壤颗粒级机械特性的新见解非常有帮助。

本文旨在分享如何对土壤样品进行X射线原位扫描测试的细节,使用观察土壤样本中粒子运动学、应变定位和颗粒间接触演化的示范性实验。结果表明,X射线原位扫描试验对探索颗粒状土壤的颗粒级行为具有很大的潜力。该协议涵盖了X射线+CT器件的选择和微型三轴载荷装置的制备,并给出了进行试验的详细程序。此外,使用图像处理和分析来量化粒子运动学(即粒子平移和粒子旋转)、应变定位和粒子间接触演化的技术步骤(即接触增益、接触丢失和介绍了土壤的接触运动)。

Protocol

1. 提前设计实验 确定测试材料、颗粒大小、样品大小和样品初始孔隙度。注:使用直径为 0.15±0.30 mm、样品尺寸为 8 x 16 mm(直径 x 高度)的礼顿 Buzzard 沙为例,演示本研究的协议。其他沙,如福建沙,休斯顿沙,渥太华沙和凯科斯Ooids等,也可以使用类似的样品大小。 根据所需的空间分辨率和扫描区域选择合适的探测器(图1A),根据预定的?…

Representative Results

图 5描述了在两个典型的剪切增量 I 和 II 期间在 2D 切片处的莱顿 Buzzard 沙 (LBS) 样本的粒子运动学结果。大多数粒子都成功跟踪,其平移和旋转按照上述协议进行量化。在第一次剪切增量中,粒子位移和粒子旋转均不显示清晰的定位。但是,在第二个剪切增量期间,在粒子位移贴图和粒子旋转贴图中都开发了一个局部带。图 6显示了两个剪切增量期?…

Discussion

高空间分辨率X射线微CT和先进的图像处理和分析技术,使多尺度(即宏观尺度、中尺度和微量)下粒状土壤的机械性能得到实验性研究。粒级水平)。然而,基于CT图像的中显和颗粒尺度研究需要在装载过程中获取土壤样品的高分辨率CT图像。这个过程最具挑战性的方面也许是制造一个微型三轴装载装置,可以与X射线微型CT设备结合使用。除了X射线微CT设备的限制,如空间分辨率、扫描区域和旋转…

開示

The authors have nothing to disclose.

Acknowledgements

这项研究得到了第1号普通研究基金的支持。香港特别行政区研究资助委员会资助城市U 11213517,中国国家科学基金会研究补助金51779213,上海同步辐射设施BL13W光束线。

Materials

Confining pressure offering device GDS STDDPC
De-aired water N/A N/A Water de-aired in the lab
Leighton Buzzard sand Artificial Grass Cambridge Drained Industrial Sand 25 kg Can be replaced with different soils
Miniature triaxial loading device N/A N/A The miniature loading device is specially fabricated by the authors
Silicon grease RS company RS 494-124
Synchrotron radiation X-ray micro CT setup Shanghai Synchrotron Radiation Facility Center (SSRF) 13W1 The triaxial testing is carried out at the BL13W beam-line of the SSRF
Vacuum pump Hong Kong Labware Co., ltd. Rocker 300

参考文献

  1. Cundall, P. A., Strack, O. D. A discrete numerical model for granular assemblies. Géotechnique. 29 (1), 47-65 (1979).
  2. Rothenburg, L., Bathurst, R. J. Micromechanical features of granular assemblies with planar elliptical particles. Géotechnique. 42 (1), 79-95 (1992).
  3. Iwashita, K., Oda, M. Rolling resistance at contacts in simulation of shear band development by DEM. Journal of Engineering Mechanics. 124 (3), 285-292 (1998).
  4. Jiang, M. J., Yu, H. S., Harris, D. A novel discrete model for granular material incorporating rolling resistance. Computers and Geotechnics. 32 (5), 340-357 (2005).
  5. Ai, J., Chen, J. F., Rotter, J. M., Ooi, J. Y. Assessment of rolling resistance models in discrete element simulations. Powder Technology. 206 (3), 269-282 (2011).
  6. Zhou, B., Huang, R., Wang, H., Wang, J. DEM investigation of particle anti-rotation effects on the micromechanical response of granular materials. Granular Matter. 15 (3), 315-326 (2013).
  7. Matsushima, T., Saomoto, H. Discrete element modeling for irregularly-shaped sand grains. Proc. NUMGE2002: Numerical Methods in Geotechnical Engineering. , 239-246 (2002).
  8. Price, M., Murariu, V., Morrison, G. Sphere clump generation and trajectory comparison for real particles. Proceedings of Discrete Element Modelling. , (2007).
  9. Ferellec, J., McDowell, G. Modelling realistic shape and particle inertia in DEM. Géotechnique. 60 (3), 227-232 (2010).
  10. Wiącek, J., Molenda, M., Horabik, J., Ooi, J. Y. Influence of grain shape and intergranular friction on material behavior in uniaxial compression: Experimental and DEM modeling. Powder Technology. , 435-442 (2012).
  11. Ng, T. T. Fabric study of granular materials after compaction. Journal of Engineering Mechanics. 125 (12), 1390-1394 (1999).
  12. Cleary, P. W. The effect of particle shape on simple shear flows. Powder Technology. 179 (3), 144-163 (2008).
  13. Oda, M. Initial fabrics and their relations to mechanical properties of granular material. Soils and Foundations. 12 (1), 17-36 (1972).
  14. Konagai, K., Tamura, C., Rangelow, P., Matsushima, T. Laser-aided tomography: a tool for visualization of changes in the fabric of granular assemblage. Structural Engineering/Earthquake Engineering. 9 (3), 193-201 (1992).
  15. Johns, R. A., Steude, J. S., Castanier, L. M., Roberts, P. V. Nondestructive measurements of fracture aperture in crystalline rock cores using X ray computed tomography. Journal of Geophysical Research: Solid Earth. 98 (2), 1889-1900 (1993).
  16. Ohtani, T., Nakano, T., Nakashima, Y., Muraoka, H. Three-dimensional shape analysis of miarolitic cavities and enclaves in the Kakkonda granite by X-ray computed tomography. Journal of Structural Geology. 23 (11), 1741-1751 (2001).
  17. Oda, M., Takemura, T., Takahashi, M. Microstructure in shear band observed by microfocus X-ray computed tomography. Géotechnique. 54 (8), 539-542 (2004).
  18. Fonseca, J., O’Sullivan, C., Coop, M. R., Lee, P. D. Quantifying the evolution of soil fabric during shearing using directional parameters. Géotechnique. 63 (6), 487-499 (2013).
  19. Fonseca, J., O’Sullivan, C., Coop, M. R., Lee, P. D. Quantifying the evolution of soil fabric during shearing using scalar parameters. Géotechnique. 63 (10), 818-829 (2013).
  20. Desrues, J., Chambon, R., Mokni, M., Mazerolle, F. Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique. 46 (3), 529-546 (1996).
  21. Lenoir, N., Bornert, M., Desrues, J., Bésuelle, P., Viggiani, G. Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock. Strain. 43 (3), 193-205 (2007).
  22. Higo, Y., Oka, F., Sato, T., Matsushima, Y., Kimoto, S. Investigation of localized deformation in partially saturated sand under triaxial compression using microfocus X-ray CT with digital image correlation. Soils and Foundations. 53 (2), 181-198 (2013).
  23. Alikarami, R., Andò, E., Gkiousas-Kapnisis, M., Torabi, A., Viggiani, G. Strain localisation and grain breakage in sand under shearing at high mean stress: insights from in situ X-ray tomography. Acta Geotechnica. 10 (1), 15-30 (2015).
  24. Cheng, Z., Wang, J. Quantification of the strain field of sands based on X-ray micro-tomography: A comparison between a grid-based method and a mesh-based method. Powder Technology. , 314-334 (2019).
  25. Hall, S. A., Bornert, M., Desrues, J., Pannier, Y., Lenoir, N., Viggiani, G., Bésuelle, P. Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Géotechnique. 60 (5), 315-322 (2010).
  26. Andò, E., Hall, S. A., Viggiani, G., Desrues, J., Bésuelle, P. Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotechnica. 7 (1), 1-13 (2012).
  27. Watanabe, Y., Lenoir, N., Otani, J., Nakai, T. Displacement in sand under triaxial compression by tracking soil particles on X-ray CT data. Soils and Foundations. 52 (2), 312-320 (2012).
  28. Cheng, Z., Wang, J. A particle-tracking method for experimental investigation of kinematics of sand particles under triaxial compression. Powder Technology. 328, 436-451 (2018).
  29. Matsushima, T., Katagiri, J., Uesugi, K., Nakano, T., Tsuchiyama, A. Micro X-ray CT at Spring-8 for granular mechanics. Soil Stress-Strain Behavior: Measurement, Modeling and Analysis. A Collection of Papers of the Geotechnical Symposium in Rome. 146, 225-234 (2006).
  30. Andò, E., Viggiani, G., Hall, S. A., Desrues, J. Experimental micro-mechanics of granular media studied by X-ray tomography: recent results and challenges. Géotechnique Letters. 3, 142-146 (2013).
  31. Cheng, Z., Wang, J. Experimental investigation of inter-particle contact evolution of sheared granular materials using X-ray micro-tomography. Soils and Foundations. 58 (6), 1492-1510 (2018).
  32. Karatza, Z., Andò, E., Papanicolopulos, S. A., Ooi, J. Y., Viggiani, G. Evolution of deformation and breakage in sand studied using X-ray tomography. Géotechnique. , 1-11 (2017).
  33. Cheng, Z., Wang, J. F., Coop, M. R., Ye, G. L. A miniature triaxial apparatus for investigating the micromechanics of granular soils with in-situ X-ray micro-tomography scanning. Frontiers of Structural and Civil Engineering. , (2019).
  34. Chen, R. C., Dreossi, D., Mancini, L., Menk, R., Rigon, L., Xiao, T. Q., Longo, R. PITRE: software for phase-sensitive X-ray image processing and tomography reconstruction. Journal of Synchrotron Radiation. 19 (5), 836-845 (2012).
  35. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Systems, Man Cybernet. 9 (1), 62-66 (1979).
  36. Karatza, Z. . Study of temporal and spatial evolution of deformation and breakage of dry granular materials using X-ray computed tomography and the discrete element method. , (2017).
  37. Shi, Y., Yan, W. M. Segmentation of irregular porous particles of various sizes from X-ray microfocus computer tomography images using a novel adaptive watershed approach. Géotechnique Letters. 5 (4), 299-305 (2015).
  38. Zheng, J., Hryciw, R. D. Segmentation of contacting soil particles in images by modified watershed analysis. Computers and Geotechnics. 73, 142-152 (2016).
  39. Lai, Z., Chen, Q. Reconstructing granular particles from X-ray computed tomography using the TWS machine learning tool and the level set method. Acta Geotechnica. 14 (1), 1-18 (2019).
  40. Wiebicke, M., Andò, E., Herle, I., Viggiani, G. On the metrology of interparticle contacts in sand from x-ray tomography images. Measurement Science and Technology. 28 (12), 1-14 (2017).
  41. Karatza, Z., Andò, E., Papanicolopulos, S. A., Viggiani, G., Ooi, J. Y. Effect of particle morphology and contacts on particle breakage in a granular assembly studied using X-ray tomography. Granular Matter. 21 (3), 1-13 (2019).
  42. Cheng, Z. . Investigation of the grain-scale mechanical behavior of granular soils under shear using X-ray micro-tomography. , (2018).
  43. Antony, S. J. Evolution of force distribution in three-dimensional granular media. Physical Review E. , (2000).
  44. Kruyt, N. P., Rothenburg, L. Probability density functions of contact forces for cohesionless frictional granular materials. International Journal of Solids and Structures. 39 (3), 571-583 (2002).
  45. Marketos, G., Bolton, M. D. Quantifying the extent of crushing in granular materials: a probability-based predictive method. Journal of the Mechanics and Physics of Solids. 55 (10), 2142-2156 (2007).
  46. Cheng, Z., Wang, J. Quantification of particle crushing in consideration of grading evolution of granular soils in biaxial shearing: A probability-based model. International Journal for Numerical and Analytical Methods in Geomechanics. 42 (3), 488-515 (2018).
  47. Zhou, B., Wang, J., Wang, H. A new probabilistic approach for predicting particle crushing in one-dimensional compression of granular soil. Soils and Foundations. 54 (4), 833-844 (2014).
  48. Geng, J., Reydellet, G., Clément, E., Behringer, R. P. Green’s function measurements of force transmission in 2D granular materials. Physica D: Nonlinear Phenomena. 182, 274-303 (2003).
  49. Majmudar, T. S., Behringer, R. P. Contact force measurements and stress-induced anisotropy in granular materials. Nature. 435, 1079 (2005).
  50. Hurley, R. C., Hall, S. A., Andrade, J. E., Wright, J. Quantifying interparticle forces and heterogeneity in 3D granular materials. Physical Review Letters. 117 (9), 098005 (2016).

Play Video

記事を引用
Cheng, Z., Wang, J. Visualization of Failure and the Associated Grain-Scale Mechanical Behavior of Granular Soils under Shear using Synchrotron X-Ray Micro-Tomography. J. Vis. Exp. (151), e60322, doi:10.3791/60322 (2019).

View Video