概要

细胞和组织中辅酶A的定量

Published: September 27, 2019
doi:

概要

该方法描述了来自培养细胞和动物组织的样品制备,在样品中提取和衍生辅酶A,然后高压液相色谱用于纯化和定量衍生辅酶A吸光或荧光检测。

Abstract

最新研究表明,细胞辅酶A(CoA)供应可能受到限制,对生长、新陈代谢和生存产生不利影响。细胞CoA的测量是一个挑战,由于其相对较低的丰度和自由CoA的动态转换到CoA硫化物,反过来,参与大量的代谢反应。介绍了一种方法,该方法在样品制备过程中通过潜在缺陷进行导航,以产生适用于许多生物医学实验室的广泛线性检测范围的检测。

Introduction

辅酶A(CoA)是所有生物中必不可少的合成物,由泛酸(也称为泛酸盐)或维生素B5合成。CoA是有机酸的主要细胞内载体,包括短链酸,如醋酸和琥珀酸,亚链酸,如丙酸和甲基甲酸酯,长链脂肪酸,如棕榈酸和油酸盐,超长链脂肪酸,如多不饱和脂肪酸,异种生物,如丙丙酸。有机酸与CoA酶形成硫酯联联系,使其在100多个中间代谢1反应中用作基质。CoA 硫化物也是基洛斯特调节剂和转录活化剂。现在,人们赞赏2,细胞总CoA供应是调节3,4;因此,CoA的可用性可以受到限制,CoA的缺陷可能是灾难性的,例如影响CoA生物合成5的遗传性遗传性疾病。泛酸激酶催化CoA生物合成的第一步(图1)和泛酸激酶相关神经退化,称为PKAN,是由PANK2基因6的突变引起的。CoA合成酶,由COASYN基因编码,催化CoA生物合成的最后两个步骤(图1)和COASY蛋白相关的神经退化,称为CoPAN,是由COASYN基因7的突变引起的。PKAN 和 CoPAN 都是遗传性神经退行性疾病,与大脑中的铁积累和 CoA 缺乏疾病病理学有关。

在组织8之间,总 CoA 的细胞水平各不相同,在各种生理、病理和药理状态下,总 CoA 可以增加或减少。肝CoA增加期间燃料从饲料切换到禁食状态9,肝CoA水平异常高的瘦素缺乏肥胖小鼠10。肝CoA减少对慢性乙醇摄入11。Pank2敲除小鼠模型中的脑CoA水平在围产期被抑制,但后来在成人阶段大脑CoA含量相当于野生型水平,表明在发育过程中有自适应CoA反应。通过转因或基因传递方法操作组织CoA含量会影响代谢和神经功能13、14、15。PKAN 或 CoPAN 潜在疗法的临床前开发包括细胞或组织 CoA 测量作为疗效指标 16、17、18、19、20.评估所有这些条件及其代谢或功能后果需要一种定量方法来测量总 CoA。

在许多实验室中,测量生物样品 CoA 的准确、可靠的检测是一项技术难题。不幸的是,没有探针可用于评估或量化在完整细胞中的CoA或CoA硫化物,虽然天然CoA硫化物的类比在利用酶21的CoA酯研究中被广泛用作机械探针。CoA 与游离磺酸 (-SH) 莫伊蒂一起转换为 CoA 硫化物(反之亦然)在转移到不同环境和细胞裂解期间在细胞或动物组织中快速。细胞中的大量丙基-CoA合成酶和丙基-CoA硫酯酶在CoA池内介导转化,利用CoA硫酯作为基质的其他酶在生物样品中保持活性,直到通过化学或物理淬火意味 着。通过丙烯转移酶将丙基组从CoA卸载到肉碱,是反应网络中可能改变CoA/CoA硫酯分布的一个例子。放射性示踪剂可用于测量细胞中的CoA合成率。目前测量生物样品中的CoA和CoA衍生物的方法已经审查了22种,包括耦合酶分光度测定测定、高压液相色谱和质谱法程序。然而,这些方法往往集中在特定的CoA分子物种上,并且对整个CoA池的变化视而不见。由于检测灵敏度低,并且线性范围有限,耦合酶测定通常需要大量输入材料。

我们的实验室已经开发出一种可靠的程序,用于定量培养细胞和动物组织中的总CoA。该战略包括所有CoA硫化物的水解,在样品制备过程中只产生免费CoA,而不是努力维持和分析CoA物种的整个谱系。该程序是单独公布的方法汇编,用于制备样品、CoA衍生、纯化和高压液相色谱 (HPLC) 后识别,以及通过吸光或荧光检测23,24,25。使用此程序获得的 CoA 测定使我们能够了解 CoA 法规,并开发治疗 CoA 缺陷的治疗方法。

Protocol

本议定书中提到的动物程序是按照第323和556号议定书进行的,并特别得到圣朱德儿童研究医院机构动物护理和使用委员会的批准。 1. 准备解决方案 注:使用超纯水用于所有解决方案,并在程序中注明。 在水中制备1 mM氢氧化钾(KOH)。 在水中准备 0.25 M KOH。 在水中准备 1 M Trizma-HCl 并调节到 pH 8.0。 在醋酸酯(Optima级)中制?…

Representative Results

利用mBBr将CoA的二醇衍生为荧光剂,然后利用反相HPLC纯化衍生的CoA-bimane,开发出一种相对快速、可靠的方法,用于检测培养细胞和组织的总CoA。首先生成标准曲线,其中已知且不断增加的 CoA-bimane 标准量单独注入,CoA-bimane 色谱图中峰值下的区域绘制为输入 CoA-bimane 的函数(图 4)。CoA-bimane 的吸收率最大值为 ±393 nM ,具有代表性的 HPLC 配置文件使用表 1中的洗?…

Discussion

在这里,我们演示了一个可靠的、分步化的过程,用于量化细胞和动物组织中的总 CoA,具有广泛的线性检测功能,这些线性检测可在具有吸收性或荧光输出检测器的 HPLC 的实验室中进行。或者,质谱法是评估CoA和CoA硫化物的常用技术,但由于仪器的成本以及开发方法和解释数据所需的专业知识,因此不能广泛提供。适合用作质谱中自由 CoA 定量的内部标准的同位标记 CoA 不可用于商业上,并且仪?…

開示

The authors have nothing to disclose.

Acknowledgements

作者承认,由BridgeBio LLC的子公司CoA治疗公司、国家卫生研究院拨款GM34496和美国黎巴嫩叙利亚联合慈善机构提供的赞助研究提供资金。

Materials

2-(2-pyridyl)-ethyl silica gel SPE column Millipore-Sigma 54127-U
coenzyme A Avanti Polar Lipids 870700
Gemini C18 3 μm 100 Å HPLC column Phenomenex 00F-4439-E0
monobromobimane ThermoFisher Scientific M-1378
Omni-Tip probe tissue disrupter Omni International 32750H
Parafilm Fisher S37440
PowerGen 125 motorized rotor stator homogenizer ThermoFisher Scientific NC0530997
Spin-X centrifuge tube filter CoStar 8161
Trizma-HCl Fisher T395-1
Waters 2475 fluorescence detector Waters 2475
Waters 2489 UV-Vis detector Waters 2489
Waters e2695 separations module Waters e2695

参考文献

  1. Abiko, Y., Greenburg, D. M. . Metabolic Pathways. 7, 1-25 (1975).
  2. Leonardi, R., Zhang, Y. -. M., Rock, C. O., Jackowski, S. Coenzyme A: Back in action. Progress in Lipid Research. 44, 125-153 (2005).
  3. Jackowski, S., Rock, C. O. Regulation of coenzyme A biosynthesis. Journal of Bacteriology. 148, 926-932 (1981).
  4. Robishaw, J. D., Berkich, D. A., Neely, J. R. Rate-limiting step and control of coenzyme A synthesis in cardiac muscle. Journal of Biological Chemistry. 257, 10967-10972 (1982).
  5. Di Meo, I., Carecchio, M., Tiranti, V. Inborn errors of coenzyme A metabolism and neurodegeneration. Journal of Inherited Metabolic Disease. 42, 49-56 (2019).
  6. Zhou, B., et al. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nature Genetics. 28, 345-349 (2001).
  7. Dusi, S., et al. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation. American Journal of Human Genetics. 94, 11-22 (2014).
  8. Dansie, L. E., et al. Physiological roles of the pantothenate kinases. Biochemical Society Transactions. 42, 1033-1036 (2014).
  9. Leonardi, R., Rehg, J. E., Rock, C. O., Jackowski, S. Pantothenate kinase 1 is required to support the metabolic transition from the fed to the fasted state. PLoS ONE. 5, 11107 (2015).
  10. Leonardi, R., Rock, C. O., Jackowski, S. Pank1 deletion in leptin-deficient mice reduces hyperglycaemia and hyperinsulinaemia and modifies global metabolism without affecting insulin resistance. Diabetologia. 57, 1466-1475 (2014).
  11. Israel, B. C., Smith, C. M. Effects of acute and chronic ethanol ingestion on pantothenate and CoA status of rats. The Journal of Nutrition. 117, 443-451 (1987).
  12. Garcia, M., Leonardi, R., Zhang, Y. M., Rehg, J. E., Jackowski, S. Germline deletion of pantothenate kinases 1 and 2 reveals the key roles for CoA in postnatal metabolism. PLoS One. 7, 40871 (2012).
  13. Corbin, D. R., et al. Excess coenzyme A reduces skeletal muscle performance and strength in mice overexpressing human PANK2. Molecular Genetics and Metabolism. 120, 350-362 (2017).
  14. Shumar, S. A., Kerr, E. W., Fagone, P., Infante, A. M., Leonardi, R. Overexpression of Nudt7 decreases bile acid levels and peroxisomal fatty acid oxidation in the liver. Journal of Lipid Research. 60, 1005-1019 (2019).
  15. Shumar, S. A., et al. Induction of neuron-specific degradation of Coenzyme A models pantothenate kinase-associated neurodegeneration by reducing motor coordination in mice. PLoS ONE. 10, 0130013 (2015).
  16. Zano, S. P., Pate, C., Frank, M., Rock, C. O., Jackowski, S. Correction of a genetic deficiency in pantothenate kinase 1 using phosphopantothenate replacement therapy. Molecular Genetics and Metabolism. 16, 281-288 (2015).
  17. Sharma, L. K., et al. A therapeutic approach to pantothenate kinase associated neurodegeneration. Nature Communications. 9, 4399 (2018).
  18. Alvarez-Cordoba, M., et al. Pantothenate Rescues Iron Accumulation in Pantothenate Kinase-Associated Neurodegeneration Depending on the Type of Mutation. Molecular Neurobiology. 56, 3638-3656 (2019).
  19. Arber, C., et al. iPSC-derived neuronal models of PANK2-associated neurodegeneration reveal mitochondrial dysfunction contributing to early disease. PLoS One. 12, 0184104 (2017).
  20. Di Meo, I., et al. Acetyl-4′-phosphopantetheine is stable in serum and prevents phenotypes induced by pantothenate kinase deficiency. Scientific Reports. 7, 11260 (2017).
  21. Nishikawa, T., Edelstein, D., Brownlee, M. The missing link: a single unifying mechanism for diabetic complications. Kidney International Supplements. 77, 26-30 (2000).
  22. Tsuchiya, Y., Pham, U., Gout, I. Methods for measuring CoA and CoA derivatives in biological samples. Biochemical Society Transactions. 42, 1107-1111 (2014).
  23. Demoz, A., Netteland, B., Svardal, A., Mansoor, M. A., Berge, R. K. Separation and Detection of Tissue Coash and Long-Chain Acyl-Coa by Reversed-Phase High-Performance Liquid-Chromatography after Precolumn Derivatization with Monobromobimane. Journal of Chromatography. 635, 251-256 (1993).
  24. Shimada, K., Mitamura, K. Derivatization of Thiol-Containing Compounds. Journal of Chromatography B. 659, 227-241 (1994).
  25. Minkler, P. E., Kerner, J., Ingalls, S. T., Hoppel, C. L. Novel isolation procedure for short-, medium-, and long-chain acyl-coenzyme A esters from tissue. Analytical Biochemistry. 376, 275-276 (2008).
  26. Newton, G. L., Fahey, R. C. Determination of biothiols by bromobimane labeling and high-performance liquid chromatography. Methods in Enzymology. 251, 148-166 (1995).
  27. Radkowsky, A. E., Kosower, E. M. Bimanes .17. (Haloalkyl)-1,5-Diazabicyclo[3.3.0]Octadienediones (Halo-9,10-Dioxabimanes) – Reactivity toward the Tripeptide Thiol, Glutathione. Journal of the American Chemical Society. 108, 4527-4531 (1986).
  28. Zhang, Y. M., et al. Chemical knockout of pantothenate kinase reveals the metabolic and genetic program responsible for hepatic coenzyme A homeostasis. Chemistry & Biology. 14, 291-302 (2007).
  29. Tokutake, Y., Onizawa, N., Katoh, H. Toyoda A,Chohnan S. Coenzyme A and its thioester pools in fasted and fed rat tissues. Biochemical and Biophysical Research Communications. 402, 158-162 (2010).
  30. Shibata, K., Nakai, T., Fukuwatari, T. Simultaneous high-performance liquid chromatography determination of coenzyme A, dephospho-coenzyme A, and acetyl-coenzyme A in normal and pantothenic acid-deficient rats. Analytical Biochemistry. 430, 151-155 (2012).
  31. Chohnan, S., Takamura, Y. A simple micromethod for measurement of CoASH and its use in measuring the intracellular levles of CoASH and short chain acyl-CoAs in Escherichia coli K12 cells. Agricultural and Biological Chemistry. 55, 87-94 (1991).

Play Video

記事を引用
Frank, M. W., Subramanian, C., Rock, C. O., Jackowski, S. Quantification of Coenzyme A in Cells and Tissues. J. Vis. Exp. (151), e60182, doi:10.3791/60182 (2019).

View Video