Um die Wirkung eines Chemokins auf die Makrophagenrekrutierung in vivo zu testen, wurde die gesamte Mount-in-situ-Hybridisierung verwendet, um die ektopische Expression des Chemokins zu erkennen, und Immunstaining wurde verwendet, um Makrophagen zu kennzeichnen. Live-Bildgebung wurde für die Echtzeitbeobachtung der Makrophagenmigration verwendet.
Zebrafische sind weit verbreitet in der Grundlagen- und biomedizinischen Forschung verwendet. Viele transgene Zebrafische sind derzeit verfügbar, um verschiedene Arten von Zellen zu kennzeichnen. Aufgrund des transparenten embryonalen Körpers von Zebrafischen ist es für uns bequem, die Wirkung eines Chemokins auf das Verhalten einer bestimmten Art von Zellen in vivo zu untersuchen. Hier haben wir einen Workflow zur Untersuchung der Funktion eines Chemokins zur Makrophagenmigration in vivo bereitgestellt. Wir konstruierten ein gewebespezifisches Überexpressionsplasmid, um IL-34 zu überexpressen und injizierten das Plasmid in transgene Fischembryonen im Einzellstadium, deren Makrophagen speziell durch ein fluoreszierendes Protein gekennzeichnet wurden. Wir verwendeten dann ganze Mount-Fluoreszenz-In-situ-Hybridisierung und Immunostaining, um das Muster der Chemokin-Expression und die Anzahl oder Position von Makrophagen zu erkennen. Die injizierten WT-Embryonen wurden erhöht, um eine stabile transgene Linie zu erzeugen. Schließlich verwendeten wir konfokale Live-Bildgebung, um das Makrophagenverhalten in den stabilen transgenen Fischen direkt zu beobachten, um die Funktion von IL-34 auf Makrophagen in vivo zu untersuchen.
Zebrafisch ist ein kleiner tropischer Süßwasserfisch aus Indien. In Bezug auf die Generhaltung haben Zebrafische eine Ähnlichkeit von 87% mit dem Menschlichen1. Es kann uns Einblicke zu verwandten Themen des Menschen geben, indem es die Genregulation, Proteinfunktion und Zellverhalten wie Migration, Proliferation et.al in Zebrafischen untersucht. Zebrafisch-Embryo kann verwendet werden, um die Entwicklung von frühen Embryonen in verschiedenen Stadien nach der Hemmung des Pigments zu beobachten. Inzwischen dauert es nur drei Monate, bis sich Zebrafische zu einer Geschlechtsreife entwickeln, dann kann der Zebrafisch alle 4 Tage Hunderte von Eiern produzieren. Mini-Größe, einfache Zucht, starke Fortpflanzungsfähigkeit, diese Vorteile machen Zebrafischkultur sehr platzsparend, förderlich für großflächige Kultur. Die traditionelle Säugetiermodellmaus hat höhere Wartungskosten als Zebrafische, wodurch der Umfang des Anhebens von Mäusen begrenzt wird. Im Bereich der frühen Embryoentwicklung ist der Mausembryon aufgrund der Eigenschaften der Entwicklung von Mausembryonen im Mutterleib schwer im Leben zu beobachten. Im Gegenteil, Zebrafischembryonen entwickeln sich äußerlich und sind transparent, daher sind sie unter dem Mikroskop leicht zu beobachten. Darüber hinaus ist Zebrafisch sehr einfach, eine Vielzahl von transgenen Linien für die verwandte Genfunktionsforschung zu konstruieren. Derzeit stehen verschiedene transgene Zebrafische zur Verfügung, um verschiedene Zelltypen zu kennzeichnen. Es ist jetzt sehr praktisch, transgene Linien zu konstruieren, um Chemokine an bestimmten Stellen zu überexprimieren und die Chemokinfunktion auf zellzelliges Verhalten bei Zebrafischen zu untersuchen.
Hier haben wir einen Workflow zur Verwendung von Zebrafisch transgene Linie zur Untersuchung der Funktion von IL-34 auf Makrophagen Verhalten in vivo2,3,4,5,6,7. Zunächst konstruierten wir ein leberspezifisches Überexpressionsplasmid des Gens il34 und injizierten das Plasmid in einzellige Tg-Embryos (mpeg1: GFP), die die Makrophagen durch das fluoreszierende Protein GFP spezifisch kennzeichnen. Dann verwendeten wir ganze Mount-Fluoreszenz-In-situ-Hybridisierung und Immunostainierung, um das Muster des il34-Ausdrucks und die Anzahl oder Position von Makrophagen zu erkennen. Die injizierten WT-Embryonen wurden erhöht, um eine stabile transgene Linie zu erzeugen. In diesen Schritten haben wir die Zytokin-produzierende Linie etabliert und validiert und die Auswirkungen, die auf die Makrophagenverteilung zu sehen sind, visuell bewertet. Schließlich haben wir zur Untersuchung des Makrophagenverhaltens als Reaktion auf das Zytokin konfokale Live-Bildgebung verwendet, um die Makrophagenmigration direkt zu beobachten, um die Funktion von il34 auf der Makrophagenmigration in vivo zu bestätigen.
Das hier beschriebene Protokoll ermöglicht es uns, die Funktion eines Chemokins auf das Verhalten von Macrophagein vivo zu untersuchen, und das Verfahren erfordert einige technische Servierkenntnisse. Zusammenfassend gibt es mehrere kritische Schritte, um Komplikationen im Protokoll zu vermeiden: 1) Wählen Sie eine geeignete transgene Linie, die spezifisches und starkes transgenes Signal zeigt, um die Zelle von Interesse zu kennzeichnen; 2) wählen Sie ein geeignetes Gewebe, das für die Bildgebung und transgene Genüb…
The authors have nothing to disclose.
Wir danken Dr. Jingrong Peng für die gemeinsame Nutzung der transgenen Tg-Linie (fabp10a: DsRed); Dr. Zilong Wen für die gemeinsame Nutzung der transgenen Tg(mpeg1: GFP) Dr. Koichi Kawakami für die Bereitstellung des pTol2-Vektors. Diese Arbeit wurde von der National Natural Science Foundation of China (31771594), Guangdong Science and Technology Plan Projects (2019A030317001) und den Fundamental Research Funds for the Central Universities (D2191450) unterstützt.
Antibody | |||
Alexa 488-Anti-Goat antibody | Invitrogen | A11055 | |
Anti-Digoxigenin-HRP | perkinelmer | NEF832001EA | |
Goat-Anti-GFP antibody | Abcam | ab6658 | |
Reagent | |||
CaCl2· 2H2O | Sigma | 21097 | |
Cyanine 3 Plus Amplification Reagent | perkinelmer | NEL745001KT | |
E2 solution | 15 mM NaCl +0.5 mM KCl +1.0 mM MgSO4+150 µM KH2PO4 + 50 µM Na2HPO4 +1.0 mM CaCl2 + 0.7 mM NaHCO3 | ||
Fetal Bovine Serum(FBS) | Life | 10099-133 | |
formamide | Diamond | A100314 | |
glycerol | Sigma | V900860 | |
heparin sodium | Sigma | H3149 | |
hybridization buffer(HB) | 50% formamide+ 5×SSC+9 mM sodium citrate+50 μg/ml heparin sodium+ 500 μg/ml tRNA+ 0.1% Tween20 | ||
KCl | Sigma | P5405 | |
KH2PO4 | Sigma | P5655 | |
low melting agarose | Sigma | A9414 | |
methanol | GHTECH | 1.17112.023 | |
methylene blue | Sigma | M9140 | |
MgSO4 | Sigma | M2643 | |
Na2HPO4 | Sigma | S5136 | |
NaCl | Sigma | S5886 | |
NaHCO3 | Sigma | S5761 | |
paraformaldehyde(PFA) | Sigma | 158127 | Suspend 16 g of PFA in 400 ml of 1x PBS, heat at 60 °C to dissolve about 30 min. This solution can be prepared in advance and stored at -4 °C. Caution. Manipulate with mask. |
10×PBS | 14.2 g Na2HPO4+80 g NaCl+2 g KCl+ 2.4 g KH2PO4 in 1L ddH2O | ||
phenylthiourea(PTU) | Sigma | P7629 | |
1×Plus Amplification Diluent | perkinelmer | NEL745001KT | |
Proteinase K | Fermentas | E00492 | |
20×Saline sodium citrate(SSC) | 175.3 g NaCl+ 88.2 g sodium citrate in 1 L ddH2O, PH 7.0 | ||
sodium citrate | Sigma | A5040 | |
tricaine | Sigma | E10521 | |
tRNA | Sigma | R6625 | |
Tween20 | Sigma | P2287 | |
Plasmid | |||
pBLK-fabp10a-il34-sv40 | For Tg (fab10a:il34) transgenic line generation | ||
pBSK-il34 | For il34 probe preparation | ||
Fish | |||
Tg (mpeg1: GFP) | Label macrophages with GFP | ||
Tg (fabp10a: DsRed) | Label liver cells with DsRed | ||
Tg (fab10a:il34) | Over-expression IL-34 in liver cells |