Wir präsentieren eine kreisförmige RT-PCR-basierte Strategie, indem wir kreisförmige RT-PCR, quantitative RT-PCR, RNA 5′ Polyphosphatase-Behandlung und Northern Blot kombinieren. Dieses Protokoll enthält einen Normalisierungsschritt, um den Einfluss von instabilem 5′-Triphosphat zu minimieren, und es eignet sich zur Unterscheidung und Kartierung der primären und verarbeiteten Transkripte, die in Maismitochondrion stabil angesammelt werden.
In pflanzlichen Mitochondrien enthalten einige stationäre Transkripte 5′ Triphosphat, das aus der Transkriptioninitiierung abgeleitet wurde (primäre Transkripte), während die anderen 5′ Monophosphat enthalten, das posttranskriptional erzeugt wurde (verarbeitete Transkripte). Um zwischen den beiden Arten von Transkripten zu unterscheiden, wurden mehrere Strategien entwickelt, und die meisten von ihnen hängen von der Anwesenheit/Abwesenheit von 5′ Triphosphat ab. Das Triphosphat bei primären 5′ Termini ist jedoch instabil und behindert eine klare Diskriminierung der beiden Arten von Transkripten. Um die primären und verarbeiteten Transkripte, die in Maismitochondrion stabil angesammelt wurden, systematisch zu differenzieren und abzubilden, haben wir eine kreisförmige RT-PCR-basierte Strategie entwickelt, indem wir cRT-PCR, RNA 5′ Polyphoshpatase-Behandlung, quantitative RT-PCR (RT-qPCR) und Northern Blot. Als Verbesserung beinhaltet diese Strategie einen RNA-Normalisierungsschritt, um den Einfluss von instabilem 5′-Triphosphat zu minimieren.
In diesem Protokoll wird die angereicherte mitochondriale RNA mit RNA 5′ Polyphosphatase vorbehandelt, die 5′ Triphsophat in Monophosphat umwandelt. Nach Zirkularisierung und umgekehrter Transkription werden die beiden cDNAs, die aus 5′ Polyphosphatase-behandelten und nicht behandelten RNAs abgeleitet wurden, durch Mais 26S reife rRNA normalisiert, die ein verarbeitetes 5′ Ende hat und unempfindlich gegen 5′ Polyphosphatase ist. Nach der Normalisierung werden die primären und verarbeiteten Transkripte durch den Vergleich von cRT-PCR- und RT-qPCR-Produkten aus den behandelten und nicht behandelten RNAs diskriminiert. Die Transkript-Termini werden durch Klonen und Sequenzieren der cRT-PCR-Produkte bestimmt und dann durch Northern Blot überprüft.
Mit dieser Strategie wurden die meisten stationären Transkripte in Maismitochondrion bestimmt. Aufgrund des komplizierten Transkriptmusters einiger mitochondrialer Gene wurden einige stationäre Transkripte nicht unterschieden und/oder kartiert, obwohl sie in einem nördlichen Fleck nachgewiesen wurden. Wir sind nicht sicher, ob diese Strategie geeignet ist, die stationären Transkripte in anderen pflanzenmitochondrien oder in Plastiden zu unterscheiden und abzubilden.
In pflanzlichen Mitochondrien werden viele reife und Vorläufer-RNAs als mehrere Isoformen angesammelt, und die stationären Transkripte können in zwei Gruppen unterteilt werden, basierend auf der Differenz an ihren 5′ Enden1,2,3, 4. Die primären Transkripte haben 5′ Triphosphatendenden, die aus der Transkriptionioninitiation abgeleitet sind. Im Gegensatz dazu haben die verarbeiteten Transkripte 5′ Monophosphat, das durch posttranskriptielle Verarbeitung erzeugt wird. Diskriminierung und Kartierung der beiden Arten von Transkripten sind wichtig, um die molekularen Mechanismen zu entwirren, die der Transkription und Transkriptendreifung zugrunde liegen.
Um zwischen den primären und verarbeiteten Transkripten im pflanzlichen Mitochondrion zu unterscheiden, wurden vier Hauptstrategien entwickelt. Die erste Strategie besteht darin, die mitochondrialen RNAs mit Tabaksäurepyrophosphatase (TAP) vorzubehandeln, die 5′ Triphosphat in Monophosphat umwandelt und die Zirkularisierung von Primärtranskripten durch RNA-Ligase ermöglicht. Die Transkriptsfülle von TAP-behandelten und nicht behandelten RNA-Proben wird dann durch schnelle Amplifikation von cDNA-Enden (RACE) oder kreisförmiger RT-PCR (cRT-PCR)2,3,4verglichen. In der zweiten Strategie werden die verarbeiteten Transkripte zunächst von mitochondrialen RNAs mit Terminator 5′-phosphatabhängiger Exonuklease (TEX) aufgebraucht, und die primären Transkripte werden dann durch Primer-Erweiterungsanalyse5,6 . Die dritte Strategie besteht darin, die primären Transkripte mit Guanylyltransferase vorab zu begrenzen, und dann wird die Position der triphosphierten 5′ Termini durch Primerverlängerung zusammen mit der Ribonuklease- oder S1-Nukleaseschutzanalyse7,8 bestimmt. ,9. Anders als je nach Vorhandensein/Abwesenheit von 5′-Triphosphat kombiniert die vierte Strategie In-vitro-Transkription, standortgesteuerte Mutagenese und Primer-Erweiterungsanalyse, um die vermeintlichen Promotoren zu charakterisieren und die Transkription zu bestimmen. Initiationsstandorte8,10,11. Durch die Verwendung dieser Strategien wurden viele primäre und verarbeitete Transkripte in pflanzlichen Mitochondrien bestimmt.
Mehrere Studien haben jedoch berichtet, dass die 5′ Triphosphat der primären Transkripte instabil waren, und sie wurden leicht in Monophosphat aus unbekanntem Grund umgewandelt2,4,12,13. Dieses Problem verhindert eine klare Diskriminierung der beiden Arten von Transkripten, indem Techniken verwendet werden, die vom Vorhandensein/Fehlen von 5′-Triphosphat abhängen, und frühere Bemühungen, systematisch zwischen den primären und den verarbeiteten Transkripten in Pflanzen zu unterscheiden. mitochondrien fehlgeschlagen2,12.
In diesem Protokoll kombinieren wir cRT-PCR, RNA 5′ Polyphosphatase-Behandlung, RT-qPCR und Northern Blot, um systematisch die primären und verarbeiteten Transkripte zu unterscheiden, die in Mais (Zea mays) Mitochondrion angesammelt wurden (Abbildung 1). cRT-PCR ermöglicht die gleichzeitige Kartierung von 5′ und 3′ Extremitäten eines RNA-Moleküls, und es ist in der Regel angepasst, um Transkript-Termini in Pflanzen2,12,14,15. DIE Polyphosphatase von RNA 5 könnte zwei Phosphate aus dem triphosphatierten 5′ Termini entfernen, wodurch die primären Transkripte für die Selbstligation durch RNA-Ligase verfügbar sind. Frühere Studien zeigten, dass reife 26S rRNA in Mais 5′ Endstation verarbeitet hatte, und es war unempfindlich gegen RNA 5′ Polyphosphatase1,16. Um den Einfluss von instabilem Triphosphat auf primäre 5′ Termini zu minimieren, werden die 5′ Polyphosphatase-behandelten und nicht behandelten RNAs durch ausgereifte 26S rRNA normalisiert, und die primären und verarbeiteten Transkripte werden dann durch cRT-PCR-Produkte, die aus den beiden RNA-Proben gewonnen wurden. Die CRT-PCR-Mapping- und Diskriminierungsergebnisse werden von Northern Blot bzw. RT-qPCR überprüft. Schließlich werden alternative Primer verwendet, um die Transkripte zu verstärken, die im nördlichen Blot, aber nicht durch cRT-PCR erkannt wurden. Durch die Verwendung dieser cRT-PCR-basierten Strategie wurden die meisten stationären Transkripte in Maismitochondrion differenziert und kartiert1.
In einer früheren Studie wurden totale und mitochondriale RNAs aus der Zellsuspensionskultur von Arabidopsis verwendet, um mitochondriale Transkript-Termini durch cRT-PCR zu kartieren, und ähnliche Ergebnisse wurden12erzielt. Jedoch, nur angereicherte mitochondriale RNA wurde verwendet, um mitochondriale Transkript termini in vielen anderen Studien1,2,3,9. Wir…
The authors have nothing to disclose.
Diese Arbeit wurde von der National Natural Science Foundation of China (Grant-Nr. 31600250, Y.Z.), Science and Technology Projects of Guangzhou City (Grant-Nr. 201804020015, H.N.) und dem China Agricultural Research System (Grant-Nr. CARS-04-PS09, H.N.).
Acetic acid | Aladdin, China | A112880 | To prepare 1x TAE buffer |
Applied Biosystems 2720 Thermal Cycler | Thermo Fisher Scientific, USA | 4359659 | Thermal cycler for PCR amplification |
Ascorbic acid | Sigma-aldrich, USA | V900134 | For preparation of extraction buffer |
Biowest Agarose | Biowest, Spain | 9012-36-6 | To resolve PCR products and RNAs |
Bovine serum albumin | Sigma-aldrich, USA | A1933 | For preparation of extraction buffer |
Bromophenol blue | Sigma-aldrich, USA | B8026 | For preparation of loading buffer for agarose gel electrophoresis and Northern blot |
DEPC | Sigma-aldrich, USA | V900882 | Deactivation of RNase |
DIG Northern starter kit | Roche, USA | 12039672910 | For DIG-RNA labeling and Northern blot. This kit contains the reagents for transcription-labeling of RNA with DIG and T7 RNA polymerase, hybridization and chemiluminescent detection. |
EDTA | Sigma-aldrich, USA | V900106 | For preparation of extraction buffer and 1x TAE buffer |
EGTA | Sigma-aldrich, USA | E3889 | For preparation of wash buffer |
Gel documentation system | Bio-Rad, USA | Gel Doc XR+ | To image the agarose gel |
Glycerol | Sigma-aldrich, USA | G5516 | For preparation of loading buffer for agarose gel electrophoresis |
GoldView II (5000x) | Solarbio,. China | G8142 | DNA staining |
Hybond-N+, Nylon membrane | Amersham Biosciences, USA | RPN119 | For Northern blot |
Image Lab | Bio-Rad, USA | Image Lab 3.0 | Image gel, and compare the abundance of PCR products. |
KH2PO4 | Sigma-aldrich, USA | V900041 | For preparation of extraction buffer |
KOH | Aladdin, China | P112284 | For preparation of extraction buffer |
L-cysteine | Sigma-aldrich, USA | V900399 | For preparation of extraction buffer |
Millex | Millipore, USA | SLHP033RB | To sterile extraction and wash buffers by filtration |
Miracloth | Calbiochem, USA | 475855-1R | To filter the ground kernel tissues |
MOPS | Sigma-aldrich, USA | V900306 | For preparation of running buffer for Northern blot |
NanoDrop | Thermo Fisher Scientific, USA | 2000C | For RNA concentration and purity assay |
NaOH | Sigma-aldrich, USA | V900797 | For preparation of wash buffer |
pEASY-Blunt simple cloning vector | TransGen Biotech, China | CB111 | Cloning of the gel-recovered band. It contains a T7 promoter several bps upstream of the insertion site. |
Phanta max super-fidelity DNA polymerase | Vazyme, China | P505 | DNA polymerase for PCR amplification |
Polyvinylpyrrolidone 40 | Sigma-aldrich, USA | V900008 | For preparation of extraction buffer |
Primer Premier 6.24 | PREMIER Biosoft, USA | Primer Premier 6.24 | To design primers for reverse transcription and PCR amplification |
PrimeScript II reverse transcriptase | Takara, Japan | 2690 | To synthesize the first strand cDNA |
PureLink RNA Mini kit | Thermo Fisher Scientific, USA | 12183025 | For RNA purificaion |
RNA 5' polyphosphatase | Epicentre, USA | RP8092H | To convert 5' triphosphate to monophosphate |
RNase inhibitor | New England Biolabs, UK | M0314 | A component of RNA self-ligation and 5' polyphosphatase treatment reactions, and it is used to inhibite the activity of RNase. |
Sodium acetate | Sigma-aldrich, USA | V900212 | For preparation of running buffer for Northern blot |
Sodium chloride | Sigma-aldrich, USA | V900058 | To prepare 20x SSC |
SsoFas evaGreen supermixes | Bio-Rad, USA | 1725202 | For RT-qPCR |
T4 RNA Ligase 1 | New England Biolabs, UK | M0437 | For RNA circularization |
Tetrasodium pyrophosphate | Sigma-aldrich, USA | 221368 | For preparation of extraction buffer |
TIANgel midi purification kit | Tiangen Biotech, China | DP209 | To purify DNA fragments from agarose gel |
Tris | Aladdin, China | T110601 | To prepare 1x TAE buffer |
TRIzol reagent | Invitrogen, USA | 15596026 | To extract mitochondiral RNA. |
Universal DNA purification kit | Tiangen Biotech, China | DP214 | To recover linearized plastmids from the restriction enzyme digestion reaction |
Xylene cyanol FF | Sigma-aldrich, USA | X4126 | For preparation of loading buffer for agarose gel electrophoresis |