Мы представляем полный протокол для посмертной диагностики бешенства животных в полевых условиях с помощью быстрого иммунохроматографического диагностического теста (RIDT), от биопсии мозга выборки до окончательной интерпретации. Мы также описываем дальнейшие приложения с использованием устройства для молекулярного анализа и вирусного генотипирования.
Функциональные системы эпиднадзора за бешенством имеют решающее значение для предоставления надежных данных и повышения политической приверженности, необходимой для борьбы с болезнями. На сегодняшний день животные, подозреваемые в бешенстве-положительном, должны быть представлены на посмертное подтверждение с использованием классических или молекулярных лабораторных методов. Однако большинство эндемичных районов находятся в странах с низким и средним уровнем дохода, где диагностика бешенства животных ограничивается центральными ветеринарными лабораториями. Низкая доступность инфраструктуры эпиднадзора приводит к серьезному занижению данных о болезнях из отдаленных районов. Недавно было разработано несколько диагностических протоколов, требующих низкой технической экспертизы, что дает возможность установить диагностику бешенства в децентрализованных лабораториях. Мы представляем здесь полный протокол полевой посмертной диагностики бешенства животных с помощью быстрого иммунохроматографического диагностического теста (RIDT), от выборки биопсии мозга до окончательной интерпретации. Мы завершаем протокол, описывая дальнейшее использование устройства для молекулярного анализа и вирусного генотипирования. RIDT легко обнаруживает вирус бешенства и другие лиссавирусы в образцах мозга. Принцип таких тестов прост: материал мозга наносится на тест-полоску, где золотые конъюгированные антитела связываются специально с антигенами бешенства. Антиген-антитела комплексы связывают далее к фиксированным антителам на линии испытания, в результате чего четко видна фиолетовая линия. Вирус инактивируется в тест-полоске, но вирусная РНК может быть впоследствии извлечена. Это позволяет безопасно и легко отправляться в оборудованную лабораторию для подтверждения и молекулярного ввода пробов, а проема, а не образец инфекционного мозга. Основываясь на изменении протокола производителя, мы обнаружили повышенную чувствительность к тестам, достигающую 98% по сравнению с методом ссылки на золотой стандарт, прямым тестом на антитела к иммунофлуоресценции. Преимущества теста многочисленны: быстрая, простая в использовании, низкая стоимость и отсутствие требований к лабораторной инфраструктуре, такой как микроскопия или соответствие холодильных цепей. RIDTs представляют собой полезную альтернативу для областей, где справочные методы диагностики не доступны.
Собачье бешенство является основной причиной бешенства человека, во всем мире ответственность за около 59000 смертей человека в год, почти все происходят в странах с низким и средним уровнем дохода (LMICs) в Азии и Африке1. Основным этиологическим агентом является нейротропический собачий вирус классического бешенства (RABV, семейство Rhabdoviridae, род лиссавирус,вид лиссавируса бешенства). Тем не менее, другие связанные с бешенством лиссавирусы, в основном циркулирующие в видах летучих мышей, также вызывают болезнь2,3. В пострадавших регионах эпиднадзор за болезнями и борьба с ней часто затрудняются низкоуровневой политической приверженностью, вероятно, из-за отсутствия достоверных данных4,,5,,6. Одной из причин занижения данных о болезнях является отсутствие лабораторной диагностики, отчасти из-за ограниченного доступа к оборудованным лабораториям и подготовленного персонала, а также трудностей с отгрузкой образцов. Лабораторная диагностика необходима для подтверждения случаев бешенства и дополнительно позволяет генетическую характеристику участвующих штаммов, обеспечивая понимание передачи вируса на региональном уровне4,,5,,7.
Нынешние золотые стандарты для диагностики посмертного бешенства, одобренные Как Всемирной организацией здравоохранения (ВОЗ) и Всемирной организацией по охране здоровья животных (OIE), являются прямым тестом флуоресцентных антител (DFAT), прямым экспресс-тестом иммуногистохимии (DRIT) и молекулярными методами (например, обратная транскрипционная полимераза цепная реакция (RT-PCR))4,8. Однако надлежащее применение в LMICs остается ограниченным из-за неадекватных лабораторных помещений с несовместимым энергоснабжением, неохлажденными образцами транспорта и отсутствием системы управления качеством. Поскольку диагностика бешенства животных, как правило, проводится только в центральных ветеринарных лабораториях в ЛПМХ, имеющиеся данные эпиднадзора в основном отражают ситуацию с бешенством в городских районах.
Недавно разработанные низкотехнологичную диагностические альтернативы предоставляют возможности для установления диагностики бешенства в отдаленных районах и децентрализованных лабораторий по бешенству4,,8,,9. Быстрый иммунохроматографический диагностический тест (RIDT) является боковой тест потока на основе иммунохроматографии с использованием золота конъюгированных антител детектор и является очень перспективным бешенства диагностический инструмент10,11,12,13. Принцип прост: после разбавления, мозг материал смешивается в при условии буфера, и несколько капель применяются на тест-полоске, где золото конъюгированных моноклональных антител связываются специально с антигенами бешенства, в основном нуклеопротеины(Рисунок 1). Антиген-антитела комплексы затем проходят боковой миграции потока, связывание на испытательной линии (T-line) к фиксированным антителам против антигенов бешенства, в результате чего четко видны фиолетовые линии. Оставшиеся золотые конъюгированные антитела, не привязанные к антигенам бешенства, продолжают мигрировать и фиксироваться в мембране с помощью дополнительных целевых антител, в результате чего четко видна фиолетовая линия управления (C-line).
Одношаговый, недорогой метод является быстрым, чрезвычайно простым и не требует дорогостоящего оборудования или специальных условий хранения. С изменением протокола производителя для устранения шага разбавления, почти все оборудование и реагенты, необходимые для выполнения теста, включены в комплект14. Результат читается через 5-10 минут без микроскопа. Это является основным преимуществом перед тестом DFAT, который требует флуоресценции микроскопа и иммунофлуоресценции конъюгации, наряду с рефрижераторной транспортировки и хранения образцов. Даже тест DRIT, который может быть выполнен с помощью светового микроскопа, требует непрерывной холодной цепи для хранения антител к бешенству, которые также еще не доступны на коммерческой основе. По сравнению с ДРИТ, РИДТ не требует токсичных химических веществ, что является особым преимуществом в странах, где утилизация отходов плохо регулируется. Быстрый тест занимает меньше времени при гораздо более легкой интерпретации по сравнению с тестами золотого стандарта DFAT и DRIT. Это позволяет проводить тестирование на месте персоналом с ограниченным техническим опытом.
На основе этих тестовых свойств, быстрая диагностика подозреваемых животных в отдаленных районах становится возможным, облегчая осуществление постпознания профилактики (PEP) для подвергшихся воздействию людей как можно скорее. Кроме того, в дистанционной транспортировке образцов бешенства не требуется, что приводит к улучшению качества проб на момент тестирования. Тем не менее, результаты, полученные с тестами RIDT в настоящее время должны быть подтверждены с помощью эталонного диагностического теста, такого как DFAT или DRIT.
Были оценены методы RIDT для выявления РАБВ и других лиссавирусов. Одно из первых исследований было проведено корейскими исследователями в 2007году 10. По сравнению с методом DFAT, в 51 образце животных и 4 изолятах RABV, RIDT показал чувствительность и специфичность 91,7% и 100%, соответственно. Эти результаты были позже подтверждены 110 образцами мозга животных из Кореи, с чувствительностью и специфичностью, по сравнению с DFAT, 95% и 98,9%, соответственно15. Совсем недавно, другие исследования оценили производительность этого RIDT с использованием вирусных изолятов и / или инфицированных образцов мозга из различных животных с различным географическим происхождением. Группа из 21 образцов, в том числе африканских RABV и других африканских лиссавирусов (duvenhage вирус (DUVV), Лагос летучая мышь вирус (LBV) и вирус Мокола (MOKV)), были успешно обнаружены, с чувствительностью 100% по сравнению с DFAT16. Аналогичная высокая чувствительность (96,5%) и специфичность (100%) значения были получены из панели из 115 образцов мозга из Эфиопии17. Другое исследование оценило европейские изоляты RABV, два других европейских лиссавируса (европейский лиссавирус летучих мышей типа 1 (EBLV-1) и тип 2 (EBLV-2)), и австралийский лиссавирус летучих мышей (ABLV)18. На основе анализа 172 образцов мозга животных, комплект RIDT имел 88,3% чувствительность и 100% специфичность по сравнению с DFAT, и три связанных с бешенством лиссавирусов были успешно обнаружены. В этом изучении, некоторые из ложных отрицательных результатов пришли от образцов мозга, сохраненных в буфере глицерола, предлагая что неправильное удаление глицерола повлияло на капиллярный поток или связывание антитела. Недавний анализ 43 клинических образцов австралийских летучих мышей подтвердил предыдущие результаты испытаний, с полным согласованием DFAT19. Два исследования были проведены в Индии с использованием RIDT на ограниченном количестве клинических образцов (11 и 34 образцов). По сравнению с DFAT, чувствительность была между 85,7% и 91,7% и специфичность была 100%20,21. Другая оценка этого комплекта с использованием 80 образцов мозга животных из Африки, Европы и Ближнего Востока получила полное соответствие с DFAT для специфичности (100%) но более высокая чувствительность (96.9%) по сравнению с предыдущими исследованиями22. В недавнем межлабораторном сравнении этого RIDT, выполненного в 22 различных лабораториях с использованием панели из 10 образцов, общее соответствие составило 99,5%23.
Только одно недавнее многоцентрическое исследование показало неудовлетворительную общую производительность RIDT24. Были протестированы образцы из трех различных наборов данных, которые обеспечивали переменную чувствительность и значения специфичности по сравнению с DFAT. Например, чувствительность и специфичность, полученные с помощью первой панели (n’51) и второй панели (n’31) образцов экспериментальных инфицированных животных, все они были протестированы в лаборатории А, дали чувствительность 16% и 43%, соответственно, в то время как специфичность была 100% для обоих. И наоборот, результаты третьей панели (n’30) полевых клинических образцов, проанализированных лабораторией В, обеспечили полное соответствие с результатами DFAT, что было дополнительно почти полностью подтверждено лабораторией А (85% чувствительности и 100% специфичности). Вариант пакетов к пакету был предложен в качестве возможного объяснения колебания относительно низкой чувствительности с RIDT24.
В то же время, другое исследование провело аналогичный процесс проверки выше описанного RIDT, с модификацией производителя рекомендовал протокол14. Предразбовывание шаг (1:10) в PBS был опущен во время подготовки материала мозга. Основываясь на этом более простом измененном протоколе, авторы получили чувствительность и специфичность 95,3% и 93,3%, соответственно, по сравнению с DFAT путем тестирования, в лабораторных условиях, набор данных 73 образцов мозга животных, естественно или экспериментально инфицированных различными штаммами RABV. В исследовании была представлена первая оценка этого RIDT в полевых условиях (Чад, Африка). В 48 клинических образцах мозга чувствительность и специфичность составляли 94,4% и 100% соответственно. Расхождения между DFAT и RIDT были вызваны ложными положительными результатами с DFAT, определяемыми после подтверждения RT-PCR. Когда эти результаты были удалены, было полное соответствие, и это показало, что RIDT был более надежным, что DFAT в этих условияхполя 14. С помощью измененного протокола не наблюдалось вариаций между партиями и пакетами. Когда измененный протокол был применен к небольшому числу различных образцов DFAT/RIDT (n’8) в исследовании Eggerbauer et al.24,все были найдены согласованными (100% чувствительность).
Другим важным преимуществом RIDT является вторичное использование для обнаружения вирусной РНК, зафиксированной на полосе с использованием молекулярных методов (таких как RT-PCR) и последующего генотипирования14,24. После шага по извлечению, L’chenne и др.14 продемонстрировали вирусную РНК, зафиксированную на мембране устройства Anigen с использованием RT-PCR с чувствительностью 86,3% в панели из 51 образца (включая 18 образцов, протестированных и отправленных из Чада при температуре окружающей среды). Последующий генотипирование было возможно в 93% из 14 проверенных образцов. Секвенирование Сангером Ампликонов ПЦР длиной не менее 500 нуклеотидов. В дополнение к изолятам RABV, тест обнаружил четыре других вида лиссавируса, DUVV, EBLV-1, EBLV-2 и Лиссавирус летучей мыши Bokeloh (BBLV), во время полностью согласованного международного межлабораторного теста14. Чувствительность обнаружения вирусной РНК была еще выше (100%) в исследовании Eggerbauer и др., на основе лабораторных образцов экспертизы24. Последнее исследование также показало, что буфер, используемый в комплекте RIDT инактивированного вируса. Таким образом, устройства могут быть отправлены легко, при температуре окружающей среды без конкретных мер предосторожности биобезопасности для справочных лабораторий, для молекулярного подтверждения и генотипирования.
Основываясь на предыдущих оценках, инструменты RIDT предлагают многочисленные преимущества для использования в полевых условиях, особенно когда методы эталонной диагностики отсутствуют. Тем не менее, этот тест также имеет некоторые ограничения, в частности, низкая чувствительность обнаружения антигена14,24. Тест применим для образцов, содержащих большое количество вирусных антигенов, таких как образцы мозга. Тем не менее, это не подходит для других образцов, таких как слюна или другие жидкости организма. Другим недостатком является стоимость устройства (около 5-10 евро в Европе), которая дешевле по сравнению со стоимостью выполнения DFAT, RT-PCR или DRIT, но которая по-прежнему остается высокой для LMICs. Однако дальнейшее развитие и проверка аналогичных РИДТ от других компаний может привести к снижению цен. В одном исследовании сообщалось о вариациях пакетов к пакету. Хотя о ней не сообщают другие, строгий контроль качества, тем не менее, должен быть выполнен при тестировании новой партии, как и для любого реагента, используемого в среде управления качеством. Использование измененного протокола не было изменено при использовании различных партий14. Все, кроме одного исследования, показали, что чувствительность RDIT была высокой по сравнению с DFAT (около 90%-95%). Поскольку бешенство всегда приводит к летальному исходу, по-прежнему настоятельно рекомендуется подтвердить любые отрицательные результаты с ПОМОЩЬЮ эталонного диагностического теста, такого как DFAT, DRIT или RT-PCR14.
В этой рукописи мы представляем полный протокол полевой посмертной диагностики бешенства животных на основе примера коммерциализированного RIDT, от сбора образцов мозга до применения измененного протокола по сравнению с рекомендациями производителя (которые ранее были проверены14)и последующего молекулярного анализа. Этот протокол неоднократно применялся и подтверждался в полевых условиях в Западной и Центральной Африке, где RIDT регулярно использовался для диагностики бешенства наряду с тестом DFAT. Кроме того, мы демонстрируем второе приложение для устройства, в лабораторных условиях, для извлечения и обнаружения с помощью RT-PCR вирусной РНК, закрепленной на устройстве.
RIDT является простым, быстрым и недорогим методом диагностики посмертного бешенства и перспективной полевой альтернативой лабораторным испытаниям. Применение такого теста, особенно в децентрализованных районах стран с низким и средним уровнем дохода, позволит лучше понять распространенность и передачу вируса бешенства в местном и потенциально национальном масштабе. В сочетании с быстрым методом сбора образцов мозга (без полной некропсии) большим преимуществом является то, что тест может быть полностью выполнен в полевых условиях, вдали от лабораторных помещений. Образцы мозга, собранные с помощью пробного магнума, могут быть использованы для тестирования, поэтому не требуется полностью открывать череп животного. Тест прост в выполнении и интерпретации и особенно подходит для деятельности полевого наблюдения14. Другими преимуществами RIDT по сравнению с DFAT или DRIT не являются необходимость в положительном и отрицательном контроле и хранении комплекта при комнатной температуре. Кроме того, измененный протокол, в котором шаг разбавления (1:10) в PBS опущен, не требует дополнительных реагентов для выполнения теста и еще больше упрощает процедуру в полевых условиях.
Ключевым моментом является качество образцов мозга. Образцы должны быть собраны и проверены как можно скорее после смерти подозреваемого животного, или храниться при прохладной температуре перед тестированием, чтобы избежать деградации. Разложившиеся образцы не должны быть проверены, поскольку это может повлиять на результат (риск ложного отрицательного результата). Хотя данных о потере чувствительности RIDT с течением времени для образцов мозга пока нет, мы предполагаем, что он аналогичен тесту DFAT32. Однако время между смертью животного и выполнением теста может быть сокращено, так как тест можно сделать быстро и непосредственно в поле. Таким образом, существует в целом более низкий риск разложения образцов.
Другим важным шагом в протоколе является миграция приостановки выборки. Миграция должна начинаться сразу после внесения образца (1-5 мин). Поэтому высокая вязкость приостановки может негативно повлиять на миграцию. Аккуратно царапины нижней части устройства депозит сайта с капельницы и добавить еще 1-2 капель часто решает эту проблему, и миграция начинается сразу после.
Большинство тестов RIDT, проведенных в африканских лабораториях (Чад, Кот-д’Ивуар и Мали), проводились при температуре окружающей среды, которая может превышать 30 градусов по Цельсию, в то время как диапазон температуры для хранения и использования, рекомендованный производителем, составляет 15 градусов по Цельсию – 30 градусов по Цельсию. Хотя мы не выявили какого-либо влияния высокой температуры на производительность теста RIDT, необходимо оценить его более тщательно. Аналогичным образом, влияние высокой температуры при хранении и транспортировке устройства после использования для обнаружения вирусной РНК и генотипирования требует дополнительной оценки. Чувствительность обнаружения вирусной РНК РТ-qPCR от полосы RIDT может зависеть от качества образца мозга, первоначально используемого в тесте, но и от состояния хранения тестов RIDT после использования. Например, чувствительность обнаружения РНК была выше, когда использованные тесты RIDT хранились в контролируемых лабораторных условиях (94,7%) по сравнению с полевыми условиями (например, Чад) (81,2%)14. Эти условия могут также повлиять на целостность (особенно длина) РНК фиксированной на полосе, возможно, объясняя умеренную чувствительность для генотипирования на основе более ПЦР ампликонов (например, йgt;500 нуклеотидов)14. Чувствительность RT-qPCR, выполненная на тест-полоске, была ниже, чем у полученных с помощью карт FTA Whatman (80,6%)14. Как и другие молекулярные методы, вирусная нагрузка может также повлиять на успех генотипирования на основе полос RDIT, с потенциальными отрицательными результатами для образцов с низкой вирусной нагрузкой14.
В настоящее время этот тест не рекомендован ВОЗ и УСВН для регулярной диагностики и эпиднадзора за болезнями, и результат не может быть использован сам по себе для принятия решений по вопросам ПЭП. Дальнейшая проверка теста по-прежнему необходима. Тем не менее, точная быстрая диагностика бешенства является важнейшим элементом хорошо функционирующих систем непрерывного эпиднадзора за бешенством и играет важную роль в повышении политической приверженности, что крайне важно для успешного устойчивого контроля бешенства33. Тесты RIDT предлагают новые возможности для диагностики бешенства в этом контексте и являются полезным инструментом для расширения эпиднадзора за бешенством животных в полевых условиях в энзоотических районах с низким или средним уровнем дохода.
The authors have nothing to disclose.
Эта работа была поддержана в рамках Глобального альянса по вакцинам и иммунизации (ГАВИ), Фонда Вольфермана Нюгели, Швейцарского африканского научно-исследовательского сотрудничества (SARECO), SWF Stiftung f’r wissenschaftliche Forschung, Freiwillige Akademische Gesellschaft (FAG) Базель, Двусторонняя программа научно-технического сотрудничества Швейцарии с Азией и Фондом Новарха.
Мы благодарим особенно владельцев собак, ветеринарный персонал и сотрудников лаборатории за их большую приверженность. Мы также хотим отметить Лизу Крамп для редактирования языка.
Anti-Rabies Nucleocapsid Conjugate (lyophilizied, adsorbed) | Bio-Rad, France | 3572112 | Fluorescein-5-isothiocyanate (FITC) conjugated polyclonal antibody against the nucleocapsid of rabies virus. Use for the DFAT reference tecnnique. |
Applied Biosystems 7500 Real-Time PCR System | Applied Biosystems, France | 4351104 | Amplification of the viral RNA by RT-qPCR after extraction from the RIDT device. |
Disposable plastic pipette, drinking straw, clamp, dropper | – | – | Equipment used for the collection of the brain stem (medulla oblongata) via the foramen magnus (occipital route). |
Evans Blue Solution 1% | Bio-Rad, France | 3574911 | Counter-coloration used for the DFAT to facilite the reading under UV microscope. |
Primer eGFPF1 | Eurofins Genomics, Germany | – | Forward primer for the amplification of the internal control eGFP by RT-qPCR after RNA extraction from the RIDT device, sequence: 5'-GACCACTACCAGCAGAACAC-3'. |
Primer eGFPR2 | Eurofins Genomics, Germany | – | Reverse primer for the amplification of the internal control eGFP by RT-qPCR after extraction from the RIDT device, sequence: 5'-GAACTCCAGCAGGACCATG-3'. |
Primer Taq17 revlong | Eurofins Genomics, Germany | – | Reverse primer for the amplification of the viral RNA by RT-qPCR after RNA extraction from the RIDT device, sequence: 5'-ATGAGAAGTGG AAYAAYCATCA-3'. |
Primer Taq3 long | Eurofins Genomics, Germany | – | Forward primer for the amplification of the viral RNA by RT-qPCR after RNA extraction from the RIDT device, sequence: 5'-GATCTGTCTGAA TAATAGAYCCARG-3'. |
Probe eGFP FAM/TAMRA | Eurofins Genomics, Germany | – | Forward primer for the amplification of the internal control by RT-qPCR after extraction from the RIDT device, sequence: 5'-AGCACCCAGT CCGCCCTGAGCA-3'. |
Probe RABV4 FAM/TAMRA | Eurofins Genomics, Germany | – | Probe for the amplification of the viral RNA by RT-qPCR after RNA extraction from the RIDT device, sequence: 5'-AACACYTGATCBA GKACAGARAAYACATC-3'. |
Probe RABV5 FAM/TAMRA | Eurofins Genomics, Germany | – | Probe for the amplification of the viral RNA by RT-qPCR after RNA extraction from the RIDT device, sequence: 5'-AGRGTGTTTTCYAG RACWCAYGAGTTTTTYCA-3'. |
Rapid Rabies Ag Test Kit | BioNote Inc., Republic of Korea | RG18-01DD | Rapid immunochromatographic diagnostic test (RIDT, also named lateral flow device or LFD) for the post-mortem diagnosis of rabies. |
Recombinant RNasin Ribonuclease Inhibitor | Promega, USA | N2515 | Enzyme used with the kit for the amplification of the viral RNA by RT-qPCR after extraction from the RIDT device. |
SuperScript III Platinum One-Step qRT-PCR Kit | Invitrogen, France | 11732-020 | Kit for the amplification of the viral RNA by RT-qPCR after extraction from the RIDT device. |
TRIzol Reagent | Invitrogen, France | 15596026 | Phenol/chloroforme based total RNA extraction using the cellulose membrane of the RIDT. |