We beschrijven een methode om GFP-gelabeld γδ IELs met behulp van intravital Imaging van muizen dunne darm te visualiseren door omgekeerde spinnen schijf confocale microscopie. Deze techniek maakt het bijhouden van levende cellen in het slijmvlies voor maximaal 4 uur en kan worden gebruikt om een verscheidenheid van intestinale immuun-epitheel interacties te onderzoeken.
Epitheliale lymfocyten uiten γδ T Cell receptor (γδ IEL) spelen een belangrijke rol in het immuunsysteem surveillance van het intestinale epitheel. Deels door het ontbreken van een definitief ligand voor de γδ T-cel receptor, blijft ons begrip van de regulatie van γδ IEL activering en hun functie in vivo beperkt. Dit vereist de ontwikkeling van alternatieve strategieën te ondervragen signalering trajecten die betrokken zijn bij de regulering van γδ IEL functie en de responsiviteit van deze cellen aan de lokale microenvironment. Hoewel γδ IELs op grote schaal worden begrepen om pathogeen translocatie te beperken, het gebruik van intravital Imaging is van cruciaal belang voor het begrijpen van de spatiotemporal dynamiek van IEL/epitheel interacties op Steady-State en in reactie op invasieve pathogenen. Hierin presenteren we een protocol voor het visualiseren van IEL trekgedrag in de kleine intestinale mucosa van een GFP γδ T Cell reporter muis met omgekeerde spinnen schijf confocale laser microscopie. Hoewel de maximale Imaging diepte van deze aanpak is beperkt ten opzichte van het gebruik van twee-foton laser-scanning microscopie, spinnen schijf confocale laser microscopie biedt het voordeel van hoge snelheid Beeldacquisitie met verminderde foto bleken en photodamage. Met behulp van 4D beeldanalyse software, T Cell surveillance gedrag en hun interacties met naburige cellen kunnen worden geanalyseerd na experimentele manipulatie om extra inzicht te geven in IEL activering en functie binnen de intestinale mucosa.
Epitheliale lymfocyten (IEL) bevinden zich binnen het intestinale epitheel, en worden gevonden zowel langs de kelder membraan en tussen aangrenzende epitheelcellen in de laterale intercellulaire ruimte1. Er is ongeveer één IEL voor elke 5-10 epitheelcellen; Deze IELs dienen als Sentinels om immuun toezicht van de grote uitgestrektheid van de intestinale epitheel barrière2te bieden. IELs het uitdrukken van de γδ T Cell receptor (TCR) bestaat uit tot 60% van de totale IEL populatie in de muizen dunne darm. Studies in γδ T-cel-gebrekkige muizen tonen een grotendeels beschermende rol van deze cellen in reactie op intestinale verwonding, ontsteking en besmetting3,4,5. Ondanks de generatie van de Tcrd knock-out muis6, ons begrip van γδ iel biologie blijft beperkt te wijten aan het feit dat liganden erkend door de γδ TCR nog moeten worden geïdentificeerd7. Dientengevolge, heeft het gebrek aan hulpmiddelen om deze cel bevolking te bestuderen het moeilijk gemaakt om de rol van γδ TCR activering en functie onder fysiologische en pathologische voorwaarden te onderzoeken. Om dit gat te vullen, hebben wij levende beeldvormingstechnieken ontwikkeld om γδ IEL migrerend gedrag en interactie met naburige enterocyten als middel te visualiseren om extra inzicht in γδ IEL functie en ontvankelijkheid aan externe stimuli in vivo te verstrekken.
In de afgelopen tien jaar heeft intravital Imaging aanzienlijk uitgebreid ons begrip van de moleculaire gebeurtenissen die betrokken zijn bij meerdere facetten van intestinale biologie, met inbegrip van epitheelcellen afstoten8, regulering van de epitheel barrièrefunctie9 ,10, myeloïde Cell bemonstering van Luminale inhoud11,12, en gastheer-microbe interacties11,13,14,15,16 . In het kader van de iel biologie heeft het gebruik van intravital microscopie licht geworpen op de spatiotemporal dynamiek van iel beweeglijkheid en de factoren die hun surveillance gedrag bemiddelen13,14,15, 16. De ontwikkeling van TcrdH2BeGFP (TcrdEGFP) reporter muizen, die labels γδ IELs door nucleaire GFP expressie17, bleek dat γδ IELs zijn zeer beweeglijke binnen het epitheel en vertonen een unieke surveillance gedrag dat reageert op microbiële besmetting17,13,14. Onlangs, werd een andere γδ T Cell reporter muis ontwikkeld (Tcrd-gdl) die GFP in het cytoplasma uitdrukt om visualisatie van volledige cel18toe te staan. Gelijkaardige methodologie is gebruikt om de eis van specifieke chemokinen receptoren, zoals G eiwit-gekoppelde receptor (GPCR)-18 en-55, op de dynamica van iel beweeglijkheid19,20te onderzoeken. Bij afwezigheid van een cel-specifieke verslaggever, fluorescerende geconjugeerde antilichamen tegen CD8α werden gebruikt om te visualiseren en te volgen iel beweeglijkheid in vivo19,20. Hoewel twee-foton laser scanning microscopie wordt vaak gebruikt voor intravital Imaging, het gebruik van spinnen schijf confocale laser microscopie biedt unieke voordelen voor hoge snelheid en High-Resolution Multi-Channel beelden vast te leggen met een minimale achtergrondruis. Deze technologie is ideaal om de spatiotemporal dynamiek van immuun/epitheel interacties in het complexe micromilieu van het intestinale slijmvlies te verhelderen. Bovendien, door het gebruik van verschillende transgene en/of knock-out muismodellen, deze studies kunnen inzicht geven in de moleculaire regulatie van intestinale immuun-en/of epitheelcellen functie.
De ontwikkeling van intravital microscopie technieken heeft een ongekende kans om de reorganisatie van subcellulaire structurenacht,9,22, cel-cel interacties12, 25 en het migrerende gedrag van de cel13,14,15,16,26<…
The authors have nothing to disclose.
Dit werk wordt ondersteund door NIH R21 AI143892, New Jersey Health Foundation Grant, Busch biomedische Grant (KLE). Wij danken Madeleine hu voor haar hulp bij het bewerken van het manuscript en het verstrekken van de gegevens in de representatieve resultaten.
35mm dish, No. 1.5 Coverslip | MatTek | P35G-1.5-14-C | |
Alexa Fluor 633 Hydrazide | Invitrogen | A30634 | |
BD PrecisionGlide Hypodermic needles – 27g | Thermo Fisher Scientific | 14-826-48 | |
BD Slip Tip Sterile Syringe – 1 ml | Thermo Fisher Scientific | 14-823-434 | |
BD Tuberculin Syringe | Thermo Fisher Scientific | 14-829-9 | |
Dissecting scissors | Thermo Fisher Scientific | 08-940 | |
Electrocautery | Thermo Fisher Scientific | 50822501 | |
Enclosed incubation chamber | OKOLAB | Microscope | |
Eye Needles, Size #3; 1/2 Circle, Taper Point, 12 mm Chord Length | Roboz | RS-7983-3 | |
Hank's Balanced Salt Solution | Sigma-Aldrich | 55037C | |
Hoechst 33342 | Invitrogen | H3570 | |
Imaris (v. 9.2.1) with Start, Track, XT modules | Bitplane | Software | |
Inverted DMi8 | Leica | Microscope | |
IQ3 (v. 3.6.3) | Andor | Software | |
Ketamine | Putney | Anesthesia | |
Kimwipes | VWR | 21905-026 | |
McPherson-Vannas scissors 3” (7.5 cm) Long 5X0.15mm Straight Sharp | Roboz | RS-5600 | |
Non-absorbable surgical suture, Silk Spool, Black Braided | Fisher Scientific | NC0798934 | |
Nugent Forceps 4.25” (11 cm) Long Angled Smooth 1.2mm Tip | Roboz | RS-5228 | |
Puralube Vet Ointment | Dechra | Lubricating Eye Ointment | |
Spinning disk Yokogawa CSU-W1 with a 63x 1.3 N.A. HC PLAN APO glycerol immersion objective, iXon Life 888 EMCCD camera, 405 nm diode laser, 488 nm DPSS laser, 640 nm diode laser | Andor | Confocal system | |
Xylazine | Akorn | Anesthesia |