Nós relatamos os procedimentos detalhados para experimentos de compressão em rochas e minerais agregados dentro de um aparelho multi bigorna deformação juntamente com síncrotron X-radiation. Tais experiências permitem a quantificação da distribuição do estresse dentro de amostras, que em última análise lança luz sobre os processos de compactação em Geomateriais.
Nós relatamos os procedimentos detalhados para a realização de experiências de compressão em rochas e minerais agregados dentro de um aparelho multi bigorna deformação (D-diâmetro) juntamente com síncrotron X-radiation. Um conjunto de amostra em forma de cubo é preparado e comprimido, a temperatura ambiente, por um conjunto de quatro bigornas transparente diamante sinterizado de raio-x e dois batentes de carboneto de tungstênio, a lateral e os planos verticais, respectivamente. Todos os seis batentes são alojados dentro de uma prensa hidráulica de 250 toneladas e conduzidos para dentro simultaneamente por dois blocos de vendendores guia. Um feixe de raio-x dispersivo de energia horizontal é projectado através de e difractado pela Assembleia de amostra. O feixe é comumente no modo de raio-x ou branco ou monocromático. No caso do branco, raio-x, os raios-x difractados são detectados por uma matriz de detector de estado sólido que coleta o padrão de difração dispersivo de energia resultante. No caso de raios-x monocromático, o padrão difractado é gravado usando um detector de bidimensional (2D), como uma placa de imagem ou um detector de dispositivo de carga acoplada (CCD). Os padrões de difração 2-D são analisados para derivar espaçamentos de treliça. As tensões elásticas da amostra são derivadas do espaçamento da estrutura atômica dentro de grãos. O stress é então calculado usando a predeterminado de elasticidade e a deformação elástica. Além disso, a distribuição de estresse em duas dimensões permitem entender como o estresse é distribuído em diferentes orientações. Além disso, um cintilador no caminho do raio-x produz uma imagem de luz visível do ambiente amostra, que permite a medição precisa de alterações de comprimento da amostra durante o experimento, rendendo uma medida direta da estirpe do volume da amostra. Este tipo de experimento pode quantificar a distribuição de estresse dentro de Geomateriais, que em última análise podem lançar luz sobre o mecanismo responsável por compactação. Tal conhecimento tem potencial para melhorar significativamente a nossa compreensão dos processos-chave em ciência material aplicativos, Engenharia Geotécnica, mineral física e mecânica das rochas onde compactive processos são importantes.
A lógica por trás do método apresentado neste artigo é quantificar a distribuição de estresse dentro de rochas e mineral amostra durante a compressão e compactação subsequente. Compreender a compactação em rochas e minerais agregados é de grande importância para o reservatório e Geotecnia engenharia8,17,18,19,20,28 ,33. Compactação atua para reduzir a porosidade e, portanto, leva a um aumento da pressão de poros. Qualquer tal aumento da poro pressão leva a uma diminuição na pressão efectiva35. A consequência é que diminuirá significativamente a rocha reservatório e, portanto, pode ser submetido a falha prematura a baixa tensão. Alguns exemplos das consequências resultantes da deformação inelástica em subsuperfície incluir: falha na produção de longo prazo sustentável em petróleo e gás reservatórios28,33, subsidência8, de superfície 18 , 19 , 20e alteração dos padrões de fluxo de fluido17. Portanto, um conhecimento abrangente de compactação processa-se em rochas e agregados minerais poderiam ajudar em reduzir a possibilidade de tais consequências potencialmente negativas.
A grande vantagem de usar o método destacado aqui é que fornece um meio para quantificar a distribuição de estresse internamente dentro de um geomaterial5,6 , no que diz respeito a nível global-em média externamente aplicada pressão12 , 22. Além disso, como um experimento em situ , a evolução da distribuição do estresse é tempo-resolvido. As pressões aplicadas externamente considerado intervalo de valores relativamente baixas (dezenas de mega Pascal) a valores altos (vários gigapascais). O estresse dentro da amostra é medido indiretamente usando o espaçamento da estrutura atômica dentro de grãos minerais individuais como uma medida da deformação elástica local5,6. O espaçamento da estrutura atômica é determinado com o auxílio de X-radiation, comumente no modo de raio-x branco ou monocromático. Para o branco modo raio x (por exemplo, FELLYPE em 6BM-B trajetória do Advanced Photon Source (APS), Argonne National Laboratory), a intensidade do feixe de raios-x de feixe difractado é determinada por não apenas um, mas por uma matriz de detectores de Ge 10-elemento ( Figura 1) distribuídos ao longo de um círculo fixo a azimutal ângulos de 0 °, 22,5 °, 45 °, 67,5 °, 90 °, 112,5 °, 135 °, 157,5 °, 180 °, 270 °. Para o modo monocromático de raios-x, o padrão difractado é gravado usando um CCD detector (por exemplo, FELLYPE-30 em 13-ID-D trajetória do GSECARS, APS, Argonne National Laboratory)18,23. Ambos os modos de raio-x permitem a quantificação sobre como o stress varia em diferentes orientações. Esta abordagem é fundamentalmente diferente de todos os estudos anteriores de compactação em Geomateriais.
Em estudos de compactação típica, uma amostra cilíndrica é comprimida por uma força axial é aplicado em toda a área de seção transversal pelo atuador25. Sob tais condições, a magnitude da magnitude da tensão aplicada geralmente é calculada dividindo-se simplesmente a força axial (medida por uma célula de carga) pela área de seção transversal inicial da amostra. Deve notar-se que desta magnitude da tensão aplicada é meramente um valor médio, em massa e, como tal, não realisticamente representa como o estado de estresse local varia, ou é distribuído, dentro de um material granular, complexo, heterogêneo. Rochas sedimentares detríticos, que são exemplos de materiais granulares complexos, são formadas pela agregação de grãos minerais que são posteriormente compactado e cimentado através de processos Deposicionais e LGMA1,7, 21 , 30 , 31. Estes agregados naturalmente herdam os poros que compõem os espaços vazios entre os grãos, que são intrínsecos da geometria da embalagem de grãos modificada por dissolução secundária. Daí, qualquer estresse aplicada é esperado para ser suportado pelo e concentrado em contatos de grão-de-grão e desaparecer no grão-poro interfaces.
Além da complexidade da variação de tensão dentro de um material granulado, outros fatores mais complicam a compactação estuda nesses cenários. Primeiro, o campo de tensões locais é vulnerável a qualquer alteração devido a artefatos microestrutural (por exemplo, forma de grão, preexistente fraturas) que estão inevitavelmente presentes dentro de qualquer detrital rocha sedimentar. Em segundo lugar, embora a magnitude da tensão aplicada agindo sobre as superfícies de amostra pode ser plenamente quantificada, a distribuição das tensões dentro do corpo da amostra permaneceu mal restrita. Um fim efeito32 — um limite efeito pelo qual a tensão média é concentrada perto do contato entre os carneiros de carregamento e as amostras devido ao atrito da interface — é bem conhecido para ser exibida em amostras cilíndricas carregadas em compressão. Como exemplo, Peng26 demonstrou heterogeneidade de tensão dentro de granito uniaxially comprimido amostras submetidas a uma variedade de condições finais. Portanto, para calcular com precisão a distribuição de estresse local em material granular, apresentamos o seguinte protocolo detalhado para a realização de experimentos de difração de raios x (XRD) em rochas e agregados minerais, usando um aparelho multi bigorna deformação no 6-BM-B da trajetória da APS no Argonne National Laboratory.
Apresentamos o procedimento detalhado para a realização de experiências XRD usando a célula bigorna multi 6-BM-b Talvez os passos mais críticos e ainda mais desafiadoras, no protocolo acima envolvem otimizando a qualidade da amostra. Tal importância na qualidade de exemplo aplica-se a quase toda rocha e experimentos de deformação mineral. Em primeiro lugar, é fundamental para a superfície final dos núcleos rocha para ser plana, com dois lados paralelos uns aos outros e ao mesmo tempo, perpendicular à superfí…
The authors have nothing to disclose.
Os autores gostaria de reconhecer com gratidão a dois revisores anônimos e JoVE sênior revisão editor Dr. Alisha DSouza para suas observações inestimáveis. Esta pesquisa foi realizada no 6-BM-B de fonte de fótons avançada no Argonne National Laboratory (APS). O uso desta facilidade foi apoiado pelo consórcio para a investigação de propriedades de materiais em Ciências da terra (COMPAC) sob acordo cooperativo do National Science Foundation (NSF) orelha 11-57758, 1661511 de orelha e pelo Instituto de física de Mineral, Stony Brook Universidade. Os autores reconhecem NSF para o financiamento da investigação para este programa através de orelha 1361463, 1045629 de orelha e orelha 1141895. Esta pesquisa utilizou recursos da fonte de fótons avançada, uma facilidade do Estados Unidos Departamento de energia (DOE) escritório de ciência usuário operado para o escritório da ciência DOE por Argonne National Laboratory sob contrato DEAC02-06CH11357. Os assemblies de célula são sob o projeto de desenvolvimento de montagem de bigorna multi célula COMPAC. Todos os arquivos de dados estão disponíveis mediante pedido (scheung9@wisc.edu) em autores. As amostras e os dados são arquivados no Instituto de física de minerais da Universidade Stony Brook.
Rotatory Tool Workstation Drill Press Work Station with Wrench | Dremel | 220-01 | |
MultiPro Keyless Chuck | Dremel | 4486 | |
Variable-Speed Rotatory Tool | Dremel | 4000-6/50 | |
Super small Diamond Core Drill – 2.5 mm | Dad's Rock Shop | SDCD | |
Coolant | NBK | JK-A-NBK-000-020 | Grinding Fluid Concentrate US 5 gal / 20 L |
commercial software package and codes for instrument control and data acquisition | IDL EPICS and SPEC | installed on the computer at the beamline | |
CCD Camera | Allied Vision | Prosilica GT | installed at the beamline |