We describe the immunomagnetic isolation of primary mouse oligodendrocytes, which allows the rapid and specific isolation of the cells for in vitro culture.
The efficient and robust isolation and culture of primary oligodendrocytes (OLs) is a valuable tool for the in vitro study of the development of oligodendroglia as well as the biology of demyelinating diseases such as multiple sclerosis and Pelizaeus-Merzbacher-like disease (PMLD). Here, we present a simple and efficient selection method for the immunomagnetic isolation of stage three O4+ preoligodendrocytes cells from neonatal mice pups. Since immature OL constitute more than 80% of the rodent-brain white matter at postnatal day 7 (P7) this isolation method not only ensures high cellular yield, but also the specific isolation of OLs already committed to the oligodendroglial lineage, decreasing the possibility of isolating contaminating cells such as astrocytes and other cells from the mouse brain. This method is a modification of the techniques reported previously, and provides oligodendrocyte preparation purity above 80% in about 4 h.
Oligodendrocytes (OLs) are the myelinating cells of the central nervous system (CNS)1. The isolation and culture of primary oligodendrocytes in a tightly regulated environment is a valuable tool for the in vitro study of the development of oligodendroglia as well as the biology of demyelinating diseases such as multiple sclerosis2. This requires an efficient and robust oligodendrocyte isolation and culture method3. In this study, we took advantage of the expression of a distinctive oligodendrocyte cell surface marker to implement a modified isolation technique that is rapid and specific.
Four distinct stages of oligodendrocyte maturation have been identified, each characterized by the expression of distinctive cell surface markers for each developmental stage (Figure 1). These cell surface markers can be recognized by specific antibodies4,5, and can be used to isolate OLs at specific stages. In the first stage, oligodendrocyte precursor cells (OPCs) have the capacity to proliferate, migrate, and specifically express platelet-derived growth factor receptor (PDGF-Rα)6, ganglioside A2B5, proteoglycan NG27,8, polysialic acid-neural cell adhesion molecule9 and fatty-acid-binding protein 7 (FABP7)10. OPCs have bipolar morphology with few short processes emanating from the opposing poles of the cell body, which is characteristic of neural precursor cells11.
Figure 1: Expression of cell surface markers during the mouse oligodendrocyte development. OLs cell surface markers such as A2B5, GalC (O1), NG2, O4, and PDGF-Rα can be used to specifically isolate oligodendrocytes at specific developmental stage by using specific antibodies. Please click here to view a larger version of this figure.
In the second stage, OPCs give rise to preoligodendrocytes and express at the cell membrane not only OPC markers, but also the sulfatide (a sulfated galactolipid) recognized by the O4 antibody12,13, and the GPR17 protein14, which persists until the immature oligodendrocyte (OL) stage. At this stage, preoligodendrocytes extend multipolar short processes. Preoligodendrocytes are the major OL stage at postnatal day 2 (P2) in the cerebral white matter of both rat and mouse with a minor population of immature OLs15.
During the third stage, immature OLs continue to express O4, lose expression of A2B5 and NG2 markers and begin to express galactocerebroside C16. At this stage, OLs are committed to the oligodendroglial lineage and become post-mitotic cells with long ramified branches17,18. Immature OL constitute more than 80% of the rodent white matter at P7 and at this time the first MBP+ cells are observed15,19,20,21. Therefore, isolation of OLs at P7 could ensure high cellular yield.
In the final and fourth stage of OL development, mature OLs express myelinating proteins (myelin basic protein (MBP), proteolipid protein (PLP), myelin associated glycoprotein (MAG) and myelin oligodendrocyte glycoprotein (MOG)22,23,24,25,26. At this stage, mature OLs extend membranes that form compact enwrapping sheaths around the axons and are able to myelinate. This coincides with the observation that in rat and mouse brain, MBP+ cells become increasingly abundant at P1419,20,21.
Since the first isolation of oligodendrocyte by Fewster and colleagues in 196727, several methods for isolation of OLs from the rodent CNS have been implemented including immunopanning28,29,30, fluorescence-activated cell sorting (FACS) exploiting cell surface-specific antigens28,31, differential gradient centrifugation32,33,34,35 and a shaking method based on differential adherence of different CNS glia36,37. However, existing culture methods have limitations, particularly in terms of purity, yield and time required to perform the procedures38. Therefore, more efficient isolation methods for oligodendrocytes are required.
In this paper, we present a simple and efficient selection method for the immunomagnetic isolation of stage three O4+ preoligodendrocytes cells from neonatal mice pups. This method is a modification of the techniques reported by Emery et al.39 and Dincman et al.40 and provides an oligodendrocyte preparation purity above 80% in about 4 h.
The mice used in this study were cared for according to the guidelines of the SUNY Downstate Medical Center Division of Laboratory Animal Resources (DLAR) protocol number 15-10492.
NOTE: Primary oligodendrocytes were isolated from neonatal (P5-P7 wild-type C57Bl/6N) mice. At this stage, immature OLs constitute more than 80% of the rodent white matter ensuring high cellular yield. All buffer and reagent compositions are available at the end of the Table of Materials.
1. Coverslips Preparation
NOTE: Poly-D-lysine (PDL)/laminin coated coverslips should be prepared prior to OL isolation.
2. Mouse Brain Cortex Dissociation
3. Determination of Cell Count and Viability
4. Isolation of O4+ Oligodendrocytes
5. Plating of Isolated O4+ Oligodendrocytes
6. Immunofluorescence Staining
The purpose of this study was to establish an improved isolation method for O4+ primary mouse oligodendrocytes requiring the least possible manipulation of the target cells. The entire procedure from euthanasia of the pups to plating of the cells in coverslips takes about 4 h and data shown here represent three independent experiments. After tissue dissociation, an average of 4.3 ± 0.46 x 107 cells were isolated for each independent experiment, with a viability of 91% ± 5.6%. After immunomagnetic isolation using anti-O4 tagged magnetic microbeads an average of 6.9 ± 0.38 x 106 OLs were obtained (1-1.5 x 106 per mouse) which is 16.2% ± 1.6% of the total cells initially dissociated; viability was 96.3% ± 3.5%.
Figure 2: Immunomagnetically isolated OLs express immature markers at 1DIV. (A) OLs under phase contrast microscope show bi- and tri-polar morphology. OLs express NG2 (B), O4 (C), and O1 (D). Very few astrocytes were present at 1DIV (C, red), scale bar = 50 µm. Data were collected from 3 independent experiments. Please click here to view a larger version of this figure.
To examine the antigenic phenotype of the immunomagnetically isolated cells, immunofluorescence staining was performed 24 h (1DIV) and 72 h (3DIV) after plating the cells. At 1DIV, the cell appeared to be bi- or tripolar under the phase contrast microscope (Figure 2A-B), a characteristic of feature of early stage proliferating OLs (OPCs and or preoligodendrocytes). 66.1 ± 8.4% of these cells were NG2-labeled (Figure 2B), and 58% ± 9.4% of the cells were O4-labeled (Figure 2C). O1 (GalC)-labeling, a marker of more mature cells in the oligodendrocyte lineage, was much less common (7.4% ± 6.0%, Figure 2D). This marker profile suggests that the majority of cells at this point are pre-oligodendrocytes with smaller percentages immature or mature oligos and possibly some oligodendrocyte progenitor cells (OPCs). Astrocytes, as evidenced by GFAP staining, comprised of the 0.57 ± 1.0% (Figure 2C). These data suggest that the oligodendrocytes isolated with the modified technique are highly purified and the majority show expression pattern for a marker typical of immature oligodendrocytes.
Figure 3: Expression of mature OLs markers at 3DIV. (A) OLs under phase contrast microscope show more complex morphology. At 3DIV, expression of NG2 (B) decreases dramatically, while O4 (C) and O1 (D) increase. Few astrocytes are visible at 3DIV (C, red), scale bar = 50 µm. Data were collected from 3 independent experiments. Please click here to view a larger version of this figure.
At 3DIV, oligodendrocyte morphology appeared more complex than the cells at 1DIV (Figure 3A). At this time point, the frequency of cells positive for the early oligodendrocyte marker NG2 was much lower compared to 1DIV. NG2-labeled cells comprised 31.2 ± 17.1% (versus 66.1 ± 8.4% at 1DIV, t-test p <0.0001, Figure 3B, Figure 4A). Although not analyzed here, the average intensity of staining in cells deemed to be positive for NG2 was reduced at 3DIV compared to 1DIV. Most cells (81.9% ± 4.884%, Figure 3C) showed O4-labeling, which was higher than at 1DIV (58% ± 9.4%, t-test p <0.0001, Figure 4B). Also, almost half the cells (47.2% ± 16.4%, Figure 3D) showed staining for O1 (GalC), a marker of more mature oligodendrocyte lineage, suggesting that the cells are differentiating to a more mature phenotype. The increase of O1+ cells at 3DIV was also significant compared to 1DIV (7.4% ± 6.0%, t-test p <0.0001, Figure 4C). The presence of astrocytes at this time point remained extremely low (0.8% ± 1.5%, Figure 3C) and it was not significantly different compared to 1DIV (0.57% ± 1.0%, not significant (ns), Figure 4D). These results indicate that over time, immunomagnetically isolated oligodendrocytes are able to differentiate in vitro into stage three of maturation with very little contamination of other cell types such as astrocytes.
Figure 4: Quantification of the expression of OL markers at 1DIV and 3DIV (A-D). At 1DIV, 66% of cells were NG2+, 58% of the cells were O4+, 7% of the cells were O1+ and 0.5% of the cells were GFAP+. At 3DIV, 31% of cells were NG2+, 81% of the cells were O4+, 47% of the cells were O1+ and 0.7% of the cells were GFAP+. Mean values ± SD are presented here, **** indicates p <0.0001, ns= not significant. Data were collected from 3 independent experiments. Please click here to view a larger version of this figure.
In this communication, we present a method for the efficient isolation of highly purified immature mouse oligodendrocyte cultures. Compared to previously published protocols39,40, this method yielded a higher purity with a much lower level of GFAP-positive astrocytes and a very low percentage of other non-characterized cells. It is important to point out that these are immature OLs already committed to the oligodendroglial lineage. Thus, these cells would not be useful for study of early phases of differentiation.
One of the modifications from the Dincman protocol40 was the removal of basic fibroblast growth factor (bFGF) from our proliferation media. It has been reported that in vitro, bFGF acting as a strong mitogenic factor not only inhibits OPCs from differentiation, but also decreases the number of processes46,47. Moreover, bFGF increases oligodendrocyte dedifferentiation and proliferation in passaged cells of the oligodendroglial lineage 48. Therefore, it is plausible that the reduced numbers of O4+ cells and increased numbers of A2B5+ and NG2+ cells observed in Dincman study40 may be due to the effect of bFGF in culture.
Despite using O4 binding as the method for isolating the cells, only 59% of the cells are O4+ at 1DIV. These results are qualitatively similar to those of Dincman and coworkers40 who found that using O4 binding for isolation, slightly less than 50% of cells were O4+ at 1DIV. It has been shown that PDGF delays post-mitotic development by transiently reverting O4+GalC– progenitors to A2B5+O4– pre-progenitor-like cells that subsequently differentiate even in the continued presence of PDGF 49. Therefore, it is likely that during the process of proliferation in the first day in vitro some immature OLs may experience a reversal from O4+NG2+ to O4–NG2+, while still remaining committed to the oligodendrocyte lineage. This hypothesis is supported by Dincman's finding40 that immediately after isolation about 80% of the cells were O4+.
At 3DIV, this protocol produces a somewhat higher OL purity than that described by others39,40 though we did not make a head-to-head comparison with their methods. Compared to protocol of Dincman et al.40, the lower number of GFAP-positive cells in our cultures could be due to the lack of FGF in the proliferation media. The Emery and Dugas protocol39 relies on the sequential passage of cells through culture dishes; astrocytes can attach easily to culture dishes50 and could be carried over after each sequential passage of cells during the immunopanning protocol. The presented method does not risk introducing contaminating astrocytes in our purification fraction.
Our modified method is faster compared to the other two taking about 4 h to perform. We achieve this by eliminating unnecessary steps and reagents incorporated by the other protocols. For example, compared to the Dincman protocol40, which takes 5-6 h, we omitted both the use of a kit for neural tissue dissociation and the incubation of the OL cell suspension with rat anti-mouse IgM beads to remove dead cells. Instead, we performed the dissociation of mouse brain cortices with papain and dead cells were removed by performing low speed centrifugations (200 x g).
A major modification from the Emery protocol39, which takes about 9 h, was the removal of the immunopanning selection and the removal of the requirement for a direct O2/CO2 line used to pre-equilibrate the Papain Buffer during tissue digestion. Instead, we used immunomagnetic selection and direct incubation of the mix of mouse brain cortices and Papain buffer in the CO2 incubator.
Although not directly tested in this study, the anti-O4 microbeads can also be used to isolate OLs from rat, human and transgenic mouse brain tissue. This highlights the versatility of the technique to use multiple tissue sources for OLs isolation with the potential to benefit research labs interested in working with OLs from sources other than mouse.
In conclusion, the modified OPC isolation method described in this study provides a rapid and specific alternative to obtain primary mouse oligodendrocytes that could be applied in studies of myelination and demyelinating disease.
The authors have nothing to disclose.
This study was supported by grants from the National Multiple Sclerosis Society (RG4591A1/2) and the National Institutes of Health (R03NS06740402). The authors thank Dr. Ivan Hernandez and his lab members for providing laboratory space, equipment and advice.
10ml serological pipets | Fisher Scientific | 13-676-10J | |
10ml syringe Luer-Loc tip | BD, Becton Dickinson | 309604 | |
15ml conical tubes | Falcon | 352097 | |
24-well tissue culture plates | Falcon | 353935 | |
40µm cell strainer | Fisher Scientific | 22368547 | |
50ml conical tubes | Falcon | 352098 | |
5ml serological pipets | Fisher Scientific | 13-676-10H | |
60mm tissue culture plates | Falcon | 353002 | |
70µm cell strainer | Fisher Scientific | 22363548 | |
Alexa Fluor 488 goat anti-mouse IgG (H+L) secondary antibody | Invitrogen | A11001 | |
Alexa Fluor 488 goat anti-rabbit IgM (H+L) secondary antibody | Invitrogen | A21042 | |
Alexa Fluor 488 goat anti-rabbit IgM (H+L) secondary antibody | Invitrogen | A11008 | |
Alexa Fluor 594 goat anti-chicken IgG (H+L) secondary antibody | Invitrogen | A11042 | |
Anti-O4 beads- Anti-O4MicroBeads | Miltenyi Biotec | 130-094-543 | |
Apo-Transferrin human | Sigma | T1147 | |
Autofil complete bottle top filter assembly, 0.22um filter, 250ml | USA Scientific | 6032-1101 | |
Autofil complete bottle top filter assembly, 0.22um filter, 250ml | USA Scientific | 6032-1102 | |
B27 Supplement | Invitrogen | 17504-044 | |
Boric acid | Sigma | B7660 | |
Bovine Growth Serum (BGS) | GE Healthcare Life Sciences | SH30541.03 | |
BSA | Fisher Scientific | BP-1600-100 | |
CNTF | Peprotech | 450-50 | |
d-Biotin | Sigma | B4639 | |
Desoxyribonuclease I (DNAse I) | Worthington | LS002007 | |
EDTA | Fisher Scientific | S311 | |
Epifluorescence microscope with an Olympus DP70 camera | Olympus | Bx51 | |
Feather disposable scalpels | Andwin Scientific | EF7281C | |
Forskolin | Sigma | F6886 | |
German glass coverslips, #1 thickness, 12mm diameter round | NeuVitro | GG-12-oz | |
GFAP antibody | Aves | GFAP | |
Glucose | Fisher Scientific | D16-1 | |
GlutaMAX | Invitrogen | 35050-61 | |
Insulin | Invitrogen | 12585-014 | |
Magnetic separator stand – MACS multistand | Miltenyi Biotec | 130-042-303 | |
Magnetic separator-MiniMACS separator | Miltenyi Biotec | 130-042-302 | |
Millex PES 0.22µm filter unit | Millipore | SLG033RS | |
Mounting media- Prolong Gold with DAPI | Thermo Fisher | P36930 | |
N-acetyl-cysteine (NAC) | Sigma | A8199 | |
Natural mouse laminin | Invitrogen | 23017-015 | |
Neurobasal Medium A | Invitrogen | 10888-022 | |
Neurotrophin-3 (NT-3) | Peprotech | 450-03 | |
NG2 antibody | Millipore | AB5320 | |
Papain | Worthington | LS003126 | |
PBS without Ca2+ and Mg2+ | Sigma | D5652 | |
PDGF | Peprotech | 100-13A | |
Petri dishes | Falcon | 351029 | |
Poly-D-Lysine | Sigma | P6407 | |
Primocin | Invivogen | ant-pm-2 | |
Progesterone | Sigma | P8783 | |
Putrescine | Sigma | P5780 | |
Selection column-LS columns | Miltenyi Biotec | 130-042-401 | |
Sodium Selenite | Sigma | S5261 | |
Trace elements B | Corning | 25-000-CI | |
Triiodothyronine (T3) | Sigma | T6397 | |
Triton-X | Sigma | T8787 | |
Trypan Blue Solution | Corning | 25-900-CI | |
Tween 20 | Sigma | P1379 | |
B27NBMA | 487.75 mL Neurobasal Medium A; 10 mL B27 Supplement; 1 mL Primocin; 1.25 mL Glutamax; Filter sterilize and store at 4 °C until use. | ||
B27NBMA + 10% BGS | 27 mL B27NBMA; 3 mL Bovine growth serum | ||
CNTF solution stock (10 µg/ml; 1000X) | Order from Peprotech (450-50). Make up at 0.1 to 1 mg/ml according to Manufacturer’s instruction (may vary from lot to lot) in buffer (e.g. DPBS + 0.2% BSA). Store at -80 °C. Working solution (10 µg/ml, 1000X) 1. Make on 0.2% BSA (Fisher scientific BP-1600-100) in DPBS solution and filter sterilize. 2. Dilute master stock aliquot to 10µg/ml in sterile, chilled 0.2% BSA/DPBS. 3. Aliquot (20µl/tube) and snap freeze in liquid nitrogen. 4. Store aliquots at -80 °C. |
||
d-Biotin stock solution (50 µg/ml; 5000X) | Resuspend d-Biotin (Sigma-B4639) in double-distilled H2O at 50 µg/ml (e.g. 2.5 mg in 50 ml of ddH2O). Resuspension might take fair amount of agitation/vortexing, or mild warming briefly at 37°C. If the d-Biotin still will not solubilize, it is fine to make up a less concentrated (e.g. 10µg/ml), and to add a higher volume to the B27NBMA (1/1000), instead of 1/5000). Store at 4°C. | ||
DNase I stock solution | 1. Dissolve at 12,500 U Deoxyribonuclease I / ml in HBSS chilled on ice. 2. Filter sterilize on ice 3. Aliquot at 200 µl and freeze overnight at -20°C. 4. Store aliquots at -20 to -30°C. |
||
Dulbecco’s Phosphate Buffered Saline (w/o Ca2+ and Mg2+) | Dissolve pouch in 1 Liter of water to yield 1 liter of medium at 9.6 grams of powder per liter of medium. Store at 2-8 °C. | ||
Forskolin stock solution (4.2 mg/ml; 1000X) | Add 1 ml of sterile DMSO to 50 mg Forskolin in bottle (Sigma-F6886) and pipette until resuspended. Transfer to a 15 ml centrifuge tube and add 11 ml of sterile DMSO to bring to 4.2 mg/ml. Aliquot (e.g. 20 µl) and store at -20°C. | ||
Hank’s balanced salts (HBSS) (Sigma | 1. Measure 900 ml of water (temperature 15-20 °C) in a cylinder and stir gently. 2. Add the power and stir until dissolved. 3. Rinse original package with a small amount of water to remove all traces of the powder. 4. Add to the solution in step 2. 5. Add 0.35 gr of sodium bicarbonate (7.5% w/v) for each liter of final volume. 6. Keep stirring until dissolved. 7. Adjust the pH of the buffer while stirring to 0.1-0.3 units below pH= 7.4 since it may rise during filtration. The use of 1N HCl or 1N NaOH is recommended to adjust the pH. 8. Add additional water to bring the final volume to 1L. 9. Sterilize by filtration using a membrane with a porosity of 0.22 microns. 10. Store at 2-8 °C. |
||
Insulin stock solution (4000 µg/ml) | Thaw the bottle and aliquot 25 µl per microcentrifuge tube and store at -20°C. | ||
Laminin solution | Slowly thaw laminin in the cold (2°C to 8°C) to avoid gel formation. Then, aliquot into polypropylene tubes. Store at 5° C to -20° C in aliquots (e.g. 20 µl) and do not freeze/thaw repeatedly. Laminin may be stored at these temperatures for up to six months. | ||
Magnetic Cell Sorting (MCS) Buffer | Prepare the solution containing phosphate-buffered saline (PBS), pH 7.2, and 0.5% bovine serum albumin (BSA), 0.5 mM EDTA, 5µg/ml Insulin, 1 g/L Glucose. Sterilize and degas by filtration the buffer by passing it through a 0.22 µm Millex filter. Store the buffer at 4°C until use | ||
N-Acetyl-L-cysteine (NAC) stock solution (5mg/ml; 1000X) | Dissolve N-Acetyl-L-cysteine (Sigma-A8199) at 5 mg/ml in DMEM (e.g. 50 mg NAC in 10 ml B27NBMA). Filter sterilize and aliquot (e.g. 20 µl). Store at -20°C. | ||
NT3 stock solution (1 µg/ml; 1000X) | Master stock: Order from Peprotech (450-03). Make up at 0.1 to 1 mg/ml according to manufacturer’s instructions (may vary from lot to lot), in buffer (e.g. DPBS + 0.2% BSA). Store at -80°C. Working stock (1µg/ml; 1000X): 1. Make on 0.2% BSA in DPBS solution and filter sterilize. 2. Dilute master stock aliquot to 1 µg/ml in sterile, chilled 0.2% BSA/DPBS. 3. Aliquot (e.g. 20µl/tube) and snap freeze in liquid nitrogen. 4. Store aliquots at -80°C. |
||
PDGF stock solution (10 µg/ml; 1000X) | Master stock: Order from Peprotech (100-13A). Make up at 0.1 to 1 mg/ml according to manufacturer’s instructions (may vary from lot to lot) in buffer (e.g. DPBS) + 0.2% BSA). Store at -80°C. Working stock (1µg/ml; 1000X): 1. Make on 0.2% BSA in DPBS solution and filter sterilize. 2. Dilute master stock aliquot to 1µg/ml in sterile, chilled 0.2% BSA/DPBS. 3. Aliquot (e.g. 20µl/tube) and snap freeze in liquid nitrogen. 4. Store aliquots at -80°C. |
||
Poly-D-lysine (1mg/ml; 100X) | Resuspend poly-D-lysine, molecular weight 70-150 kD (Sigma P6407) at 0.5mg/ml in 0.15M boric acid pH 8.4 (e.g. 50mg in 50ml borate buffer). Filter sterilize and aliquot (e.g. 100µl/tube). Store at -20°C. Prior to use, dilute the 100X stock (1mg/ml) to 50 µg/ml in sterile water. | ||
Oligodendrocyte proliferation media | see Supplementary Table 1 | ||
Oligodendrocyte differentiation media | see Supplementary Table 1 | ||
Sato supplement (100X) | see Supplementary Table 1 | ||
References: the list of reagents and recipes were adopted from the protocols previously described by Emery et. al. 2013 (Emery, B. & Dugas, J. C. Purification of oligodendrocyte lineage cells from mouse cortices by immunopanning. Cold Spring Harb Protoc. 2013 (9), 854-868, doi:10.1101/pdb.prot073973, (2013)) and Dincman et. al. (Dincman, T. A., Beare, J. E., Ohri, S. S. & Whittemore, S. R. Isolation of cortical mouse oligodendrocyte precursor cells. J Neurosci Methods. 209 (1), 219-226, doi:10.1016/j.jneumeth.2012.06.017, (2012)) |