Here, we present a protocol to ablate a genetically labeled subpopulation of neurons by a two-photon laser from Zebrafish larvae.
To identify the role of a subpopulation of neurons in behavior, it is essential to test the consequences of blocking its activity in living animals. Laser ablation of neurons is an effective method for this purpose when neurons are selectively labeled with fluorescent probes. In the present study, protocols for laser ablating a subpopulation of neurons using a two-photon microscope and testing of its functional and behavioral consequences are described. In this study, prey capture behavior in zebrafish larvae is used as a study model. The pretecto-hypothalamic circuit is known to underlie this visually-driven prey catching behavior. Zebrafish pretectum were laser-ablated, and neuronal activity in the inferior lobe of the hypothalamus (ILH; the target of the pretectal projection) was examined. Prey capture behavior after pretectal ablation was also tested.
To understand how behavior arises from neuronal activity in the brain, it is necessary to identify the neural circuits that are involved in the generation of that behavior. At the larval stage, the zebrafish provides an ideal animal model for studying the brain function associated with the behavior because their small, transparent brains make it possible to investigate neuronal activity at a cellular resolution in a broad area of the brain while observing the behavior1. Imaging of neuronal activity in specific neurons has become possible through the invention of genetically encoded calcium (Ca) indicators (GECIs) such as GCaMP2. GCaMP transgenic zebrafish have proven to be useful for associating the functional neural circuit with behavior by conducting Ca imaging in behaving animals3.
While Ca imaging can demonstrate correlations between neuronal activity and behavior, to show causality, suppression of neuronal activity and testing its consequence(s) on behavior are important steps. There are various ways to achieve this: use of genetic mutation that alters specific neural circuits4, expression of neurotoxins in specific neurons5,6, use of optogenetic tools such as halorhodopsin7, and laser ablation of targeted neurons8,9. Laser ablation is particularly suited for eliminating activity in a relatively small number of specific neurons. Irreversible elimination of neuronal activity by killing neurons facilitates assessing behavioral consequences.
One interesting behavior that can be observed at the larval stage in zebrafish is prey capture (Figure 1A). This visually-guided, goal-directed behavior provides a favorable experimental system for the study of visual acuity10, visuomotor transformation11,12,13, visual perception and recognition of objects14,15,16,17,18, and decision making19. How prey is recognized by predators and how prey detection leads to prey catching behavior has been a central question in neuroethology20. In this paper, we focus on the role of the pretecto-hypothalamic circuit formed by projections of a nucleus in the pretectum (nucleus pretectalis superficialis pars magnocellularis, hereafter, simply noted as the pretectum) to the ILH. Laser-ablation of the pretectum was shown to reduce prey capture activity and abolish neuronal activity in the ILH that is associated with the visual prey perception21. Here, protocols for performing laser ablation and testing its effect using Ca2+ imaging and behavioral recording in zebrafish larvae are described.
1. Ablation of a Subpopulation of Neurons Using a Two-photon Laser Microscope
Note: If users plan on performing Ca imaging following ablation, use the UAShspzGCaMP6s line21. If users plan on performing behavioral recording following ablation, use the UAS:EGFP line, as the ablation of EGFP-positive cells is easier to perform than of GCaMP6s-expressing cells.
2. Calcium Imaging to Record Prey-evoked Neuronal Activity in the Pretectum-ablated Zebrafish Larvae
3. Assessment of Behavioral Consequences Following Laser Ablation
Specific neurons were genetically labeled with either EGFP or GCaMP6s, whose expression were driven in Gal4 lines. A Gal4 line gSAIzGFFM119B was used to label a nucleus in the pretectal area (magnocellular superficial pretectal nucleus), and a subpopulation of olfactory bulb neurons. Another Gal4 line, hspGFFDMC76A, was used to label the ILH. We laser-ablated the pretectal neurons bilaterally (Figure 2A left panel) and also ablated neurons in the olfactory bulb bilaterally as a control (Figure 2A right panel) in zebrafish larvae of a Gal4 line gSAIzGFFM119B that were mated with UAS:EGFP reporter fish. Results show that two-photon laser can ablate targeted cells while leaving adjacent cells or neurites unaffected (Figure 2B).
The pretectal neurons project their axons toward the ILH ipsilaterally. Here, we investigated their functional connectivity using Ca imaging. Neuronal activity in this region can be observed as Ca signals with a Ca probe GCaMP6s (Figure 4A), whose expression was driven by a Gal4 line gSAIzGFFM119B (Figure 4B) or another Gal4 line hspGFFDMC76A (Figure 4C). The colored arrowheads (Figure 4) show swimming directions and trajectories of the paramecium, as well as color-coded Ca signal-changes in the specified brain area, which were evoked by the sight of the swimming paramecium (Figure 4B-D). Both the pretectum (Figure 4B) and the ILH (Figure 4C) showed neuronal activity in the proximal presence of prey, suggesting that both neuronal activities are visually driven.
By using the double Gal4 GCaMP6s larvae (gSAIzGFFM119B; hspGFFDMC76A; UAShspzGCaMP6s), we ablated the pretectal neurons unilaterally and further performed Ca imaging to observe neuronal activity in the pretectum and the ILH in the ablated larvae. The left pretectum that was laser-ablated showed residual to no neuronal activity (Figure 4D, top left), suggesting that laser-ablation was successful. However, the ipsilateral ILH showed dramatically reduced neuronal activity (Figure 4D bottom left), suggesting that the major input to the ILH comes from the ipsilateral pretectum. In contrast, the ILH on the other side of the laser-ablated pretectum (Figure 4D bottom right) showed neuronal activity comparable to the neuronal activity in the ipsilateral pretectum (Figure 4D, top right), which suggests that the right ILH is receiving inputs from the right pretectum.
The choice of which behavioral assay to use in an experiment depends on the possible role(s) of the neurons under investigation. Here, we show an example of a prey-capture assay following ablation of a pretectal nucleus that was identified as a prey detector21. Using the lighting system shown in Figure 5A-D, the number of paramecium in the recording chamber can be counted by image processing (Figure 5E-G). Automated extraction of eyes, and calculation of eye positions (i.e., changes in the angles of the eyes) can also be possible because the eyes of the zebrafish larva appear darker than the background in this lighting condition (Figure 5H).
Results of the experiment show that bilateral-ablation of the pretectum abolished prey-capture activity (Fig. 5I, PT) while ablation of a subpopulation of neurons in the olfactory bulb did not (Figure 5I, OB). These results, together with experiments shown in Figure 4, suggest that the pretecto-hypothalamic circuit is essential in prey-capture behavior.
Figure 1. Zebrafish larvae. (A) Five-day old (5-day post-fertilization (5-dpf)) zebrafish larva and its prey, a paramecium. (B) 4-dpf nacre larva embedded in 2% low melting-point agarose. Note that the nacre strain lacks black pigments on the body while the retinal pigment epithelium is intact. Scale bar: 0.5 mm. (C) Dissecting needle used for orienting zebrafish larvae in agarose. Scale bar: 1 cm. (D) Screenshot of the software used in the two-photon microscopy, showing "Bleaching", "Time Series", and "Regions" panels that were used in ablation. Please click here to view a larger version of this figure.
Figure 2. Ablation of a subpopulation of neurons using a two-photon laser microscope. (A) EGFP fluorescent images of 4-dpf zebrafish larvae before and after ablation of neurons. Top view and side view of 3D reconstructed z-stack images using image processing software. The z-stack images were taken with a 20X objective lens. The ablated areas (either the pretectum or olfactory bulb) are circled in yellow. Scale bar: 100 µm. (B) Example of laser ablation at a single focal plane using the "Bleaching" function. Laser-irradiated areas (set as ROIs) are shown in colors on each cell. Scale bar: 10 µm. Please click here to view a larger version of this figure.
Figure 3. Preparation of zebrafish larvae and paramecia for Ca imaging. (A) Recording chamber. A commercially available 9 mm diameter x 0.8 mm depth hybridization gasket with 8 chambers was utilized as the recording chamber. The gasket was put on a glass slide and adhered. The seal on the top of the gasket was peeled off. (B) The nylon mesh (32 µm) used to rinse the paramecia. The mesh was placed on a 50-mL tube. (C) Paramecium culture containing rice straw and dry yeast pellets. (D) Paramecium stock solution prepared from the culture shown in C. (E) Paramecium stock solution was rinsed with system water twice to remove possible olfactory and gustatory cues in the medium. (F) Paramecium embedded in the recording chamber. To remove a portion of agarose, several cuts were made. (G) Recording chamber with a zebrafish larva and a paramecium. The majority of the agarose was removed to allow the paramecium to swim. The head of the zebrafish larva is exposed. (H) Upright fluorescent microscope used in Ca imaging. The microscope is equipped with a scientific CMOS camera. (I) Zebrafish larva in the recording chamber under the microscope with the excitation light on. With a 2.5X objective lens, the illuminated area is slightly larger than the size of the chamber. Please click here to view a larger version of this figure.
Figure 4. Representative Ca imaging data. (A) Position of the pretectum and the inferior lobe of the hypothalamus (ILH), circled in yellow, in a double Gal4 hspGFFDMC76A; gSAIzGFFM119B; UAShspzGCaMP6s zebrafish larva. (B) Changes in the pretectum Ca signal (averaged bilaterally), color-mapped onto the trajectories of a paramecium in a gSAIzGFFM119B; UAShspzGCaMP6s larva. Scale bar: 1 mm. (C) Changes in the ILH Ca signal (averaged bilaterally), color-mapped on the trajectories of a paramecium in a hspGFFDMC76A; UAShspzGCaMP6s larva. Scale bar: 1 mm. (D) Changes in the pretectum and the ILH Ca signals color-mapped on the trajectories of a paramecium in a hspGFFDMC76A; gSAIzGFFM119B; UAShspzGCaMP6s larva that was subjected to two-photon laser-ablation of the left pretectum. Scale bar: 1 mm. This image was reproduced from the same data previously published21. Please click here to view a larger version of this figure.
Figure 5. Prey capture assay and representative data in laser-ablated zebrafish larvae. (A) Behavioral recording system. The stereomicroscope was equipped with a CMOS camera. Images were acquired using a custom-made script. (B) Components of the lighting system. A grey-colored paper, a glass diffuser, white LED ring light, diffuser, a custom-made spacer (cardboard), and diffuser with a hole at the center. (C) The lighting system assembled from the parts shown in B. (D) Recording chamber for the prey capture assay. A chamber (diameter: 20 mm; depth: 2.5 mm) was placed on a glass slide. The original top seal of the chamber was peeled off. A glass-cover was put on the recording chamber. (E) Raw image from a frame of the recorded movie. (F) A frame divided (pixel-by-pixel) by an average image in a movie. Note that the non-uniform background in lighting can be compensated by this image processing. (G) Paramecia extracted from a frame using the "Particle Analysis" function in Fiji. (H) Example of image in Fiji with an applied threshold. Paramecia appear bright, whereas the eyes of the zebrafish larva appear dark, and the background is grey. Changes in eye positions (i.e., angles with respect to the body axis) can be calculated, if necessary. (I) Representative experimental data of paramecium consumption in an olfactory-bulb-ablated control larva (OB) and a pretectum-ablated larva (PT). Pretectum ablation significantly reduced prey hunting ability while olfactory bulb ablation did not affect it. Please click here to view a larger version of this figure.
Although the two-photon laser has an excellent spatial resolution to specifically ablate individual neurons, great caution should be taken to avoid any undesired damage on the brain tissue owing to heat. The most important step in the ablation experiment is to determine the optimal amount of laser irradiation. Insufficient irradiation fails to kill the neurons. Too much irradiation will heat-damage the surrounding tissue, which will result in undesired effects. The optimal range of laser irradiation (areas of the ROIs, number of iterations, and scanning speed) appears to be narrow. A few factors affect the efficiency of the ablation.
First, by using different fluorescent reporter proteins, the ablation conditions need to be optimized for each reporter. GCaMP expression is observed in the cytoplasm devoid of nuclei. In contrast, EGFP fluorescence appears throughout the inside of the cell, which may be advantageous for efficient and specific ablation of the targeted cells, compared to GCaMP. The use of GCaMP is also disadvantageous as a laser-ablated GCaMP-expressing cell can exhibit increased fluorescence intensity owing to immediate massive Ca influx, in contrast to decreased fluorescence intensity when EGFP was used for ablation. Thus, the change in fluorescence cannot be a reliable indicator of the extent of ablation with GCaMP. In such cases, it may be necessary to validate ablation by observing the loss of fluorescent cells after a specific period. Absence or significant reduction of the Ca signals in the ablated area can be another criterion for successful ablation with GCaMP.
Second, the amount (i.e., scan speed, iteration number of scans) of laser irradiation required for successful ablation can vary depending on the depth of the location of the neurons from the surface of the brain. Compared with cells located near the surface, those located deep inside the brain require more laser irradiation, thus, making it more difficult to ablate them. Optimization for the amount of laser irradiation should be specifically determined for each targeted subpopulation of neurons.
Third, it was empirically observed that setting a number of ROIs in a small area in one scan often heat-damaged the tissue around the cells as well (judged by the appearance of bubbles in the laser-irradiated area), whereas targeting one cell alone, or sparsely distributed ROIs in a scan under the same condition did not have harmful effects. In the present study, bleaching was applied only on a small region (approximately one third of the cell body size) to avoid damage to tissues outside of the targeted cells. Typically, 5-10 cells were targeted on each focal plane (4-8 planes to cover the entire pretectal area).
In addition to optimizing the amount of laser irradiation, extensive validation of laser ablation by performing control experiments is critical. One control experiment can include laser ablation of another subpopulation of cells that are unlikely to be involved in the behavior being studied. Olfactory bulb neurons labeled in the same Gal4 line served as control in the present study (Figure 2A, right, and Figure 5I). However, for the reason described above, no groups of neurons can serve as an ideal control. Each subpopulation of neurons differs from the others with respect to their position in the brain, cell density, fluorescent reporter transgene expression level, the proliferation rate, and the timing of the reporter transgene expression. These differences make it impossible to use the exact same setting for ablation (the 'Bleaching' function) in control experiments. Thus, different types of control experiments should be also considered, such as measurements of the optokinetic response, visual behavior28, and basal activity in locomotion21 to ensure the specific effect of the ablation.
In our experience, ablation of dozens of the pretectal cells bilaterally, takes approximately 1 h (from embedding in agarose, ablation using a two-photon microscope, to retrieving from the agarose after ablation). Up to 8 larvae a day (e.g., 4 larvae for experimental and 4 for control) can be ablated; hence, a couple of sets of experiments may be required to ensure that there are enough larvae for an experimental group (e.g., n = 12) and for a control group (e.g., n = 12). Additionally, it is desirable to allow half a day or one day for the larvae to recover from ablation (e.g., laser ablation at 4-dpf followed by a behavioral recording at 5-dpf, or ablation in the morning followed by Ca imaging in the afternoon). During this recovery time, any ill-looking larvae should be excluded from the study.
The protocol used to analyze the obtained data depends completely on the objective of the study. The present study focused on the relationships between the location of paramecium in the visual field and neuronal activity in the pretectum and the ILH. Considering the slow decay (~ seconds) of the GCaMP6s signals29, only the timing of the increase, but not the decrease, of the GCaMP6s signals correlates with the location of the paramecium. The Ca signals can be high even when the paramecium move away. Hence, we only included increased fluorescence intensity of GCaMP6s in the data presentation. This type of analysis often requires custom-made scripts written with specific programming languages or macro languages. The scripts used in this paper are available upon request.
The restrained condition (i.e., agarose-embedded) might be stressful to the zebrafish larvae to some extent; however, we did not observe apparent stress-induced neuronal activity or behavior in this condition, when compared with the free-swimming condition21,22. Agarose-embedded zebrafish larvae can survive at least 24 h, (probably more) without any apparent problem. Paramecium-driven Ca signals in the pretectum and the ILH in the constrained condition were similar to that observed in free-swimming larvae21. Zebrafish visual behavior can be controlled by the circadian rhythm. Hence, we conducted behavioral experiments from early to late evening. Wild type and control larvae consumed a significant number of paramecia during this recording time.
The functional and behavioral assays described here utilize the most commonly available equipment that can be found in many laboratories or could be easily set up, and thus it should have broad applications in different fields of behavioral science.
The authors have nothing to disclose.
These studies were funded by grants received from the MEXT, JSPS KAKENHI Grant Numbers JP25290009, JP25650120, JP17K07494, and JP17H05984.
NuSieve GTG Agarose | Lonza | Cat.#50080 | low-melting temperature agarose |
6 cm petri dish | FALCON | Product#:351007 | |
dissecting needle | AS ONE Corporation | Cat. No. 2-013-01 | https://keystone-lab.com/en/item/detail/404142 |
LSM7MP | Carl Zeiss | two-photon laser scanning microscope | |
W Plan-Apochromat 63x/1.0 | Carl Zeiss | 63X objective lens | |
Imager.Z1 | Carl Zeiss | an epi-fluorescence microscope | |
ZEN | Carl Zeiss | Image acquisition software for confocal microscopes | |
Secure-Seal Hybridization Chamber Gasket, 8 chambers, 9 mm diameter x 0.8 mm depth | Molecular Probes | Catalogue # S-24732 | Used as a recording chamber in Ca imaging |
Imageing Chambers | Grace Bio-Labs | CoverWell Imaging Chambers PCI-A-2.5 | Used as a behavioral recording chamber |
surgical knife | MANI | Ophthalmic knife MST15 | |
ORCA-Flash4.0 | Hamamatsu Photonics | model:C11440-22CU | a scientific CMOS camera |
HCImage | Hamamatsu Photonics | image acuisition software | |
Hard Disk Recording module | Hamamatsu Photonics | An software module that enables saving the movie files onto a hard disc drive in a short time | |
SZX7 | Olympus | stereoscope | |
DF PL 0.5X | Olympus | objective lens for SZX7 | |
Point Grey Grasshopper3 4.1 MP Mono USB3 Visio | FLIR Systems, Inc. | Product No. GS3-U3-41C6NIR-C | CMOS camera |
XIMEA xiQ camera | XIMEA | Product No. MQ042RG-CM | CMOS camera |
a ring LED light | CCS | Model: LDR2-100SW2-LA | White LED |
Nylon mesh 32µm | Tokyo Screen | N-No.380T | http://www.tokyo-screen.com/cms/sta20347/ |
Nylon mesh 13µm | Tokyo Screen | N-No. 508T-K | http://www.tokyo-screen.com/cms/sta20347/ |
Metal seive 150 micron aperture | Tokyo Screen | http://www.tokyo-screen.com/cms/sta20341/#ami | |
Metal seive 75 micron aperture | Tokyo Screen | http://www.tokyo-screen.com/cms/sta20341/#ami | |
EBIOS | Asahi Food & Healthcare, Co. Ltd. | dry beer yeast | |
LabVIEW | National Instruments | an integrated development environment for programming | |
Mai-Tai HP | Spectra Physics | two-photon laser |