概要

在健康志愿者的气体麻醉剂氙和一氧化二氮的管理中记录大脑电磁活动

Published: January 13, 2018
doi:

概要

同时图和脑电图提供了一个有用的工具, 以寻找共同和独特的宏观规模的机制, 减少意识的不同麻醉剂诱导。本文阐述了在吸入一氧化二氮和氙时, 从健康人的 n-甲基-d-天门冬氨酸 (NMDA) 受体 antagonist-based 麻醉中记录这些数据的经验方法。

Abstract

麻醉可以说是研究全球意识/无意识的神经系统相关性的唯一系统方法之一。然而到目前为止, 大多数神经影像或神经的研究都局限在人类的γ-氨基丁酸 (GABA)-受体-agonist-based 麻醉剂, 而游离 n-甲基-d-天门冬氨酸 (NMDA) 的影响,受体 antagonist-based 麻醉剂氯胺酮, 一氧化二氮 (N2O) 和氙 (氙气) 大多是未知的。本文介绍了从健康男性吸入气体麻醉剂 N2O 和氙的同时记录图 (MEG) 和脑电图 (eeg) 的方法。结合 MEG 和脑电图数据, 可以评估在高时、中度的麻醉过程中的电磁脑活动。在这里, 我们描述了一个详细的协议, 在多个录音会议, 包括学科招聘, 麻醉设备设置在 MEG 扫描仪室, 数据收集和基本数据分析。在本协议中, 每个参与者在重复的测量交叉设计中暴露于不同级别的氙和 N2O。在相关的基线记录之后, 参与者将会接触到逐步增加的氙和 N2O 的8、16、24和 42%, 以及16、32和47% 分别, 在这期间, 它们的响应程度是通过听觉连续性能任务 (aCPT)。给出了许多记录的结果, 以强调原始数据的传感器级特性、频谱形貌、头部运动的最小化以及对听觉诱发反应的明确水平依赖性效应。这一范式描述了一个一般的方法来记录的电磁信号与行动的不同类型的气体麻醉剂, 这可以很容易地适应用于挥发性和静脉麻醉剂。预计该方法可以帮助理解的宏观规模的机制, 麻醉通过启用方法扩展涉及源空间成像和功能网络分析。

Introduction

临床前神经证据表明, 人的意识现象依赖于显式神经回路的完整性。这种电路被系统的下降到无意识的影响的观察证实了需要在麻醉过程中使用的神经影像技术, 并使 ‘ 导航 ‘ 搜索的神经系统相关性意识.除了睡眠, 麻醉是唯一的方法, 通过它可以控制, 可逆和重现的时尚, 扰乱, 从而解剖, sub-serve 意识的机制, 特别是在宏观尺度全球脑动力学。临床上, 全身麻醉可以定义为催眠/无意识, 静止和镇痛的状态, 仍然是最广泛使用和最安全的医疗干预之一。尽管最终结果的清晰度和效率, 仍然有很大的不确定性有关的作用机制的各种类型的药物引起麻醉性昏迷1

麻醉剂可以分为静脉注射剂, 特别是异丙酚和巴比妥酸盐, 或挥发性/气态剂, 如七氟醚, 氟烷, 一氧化二氮 (N2O) 和氙 (氙气)。麻醉药理学已经很好地建立了多个细胞靶点确定与麻醉作用。大多数研究对象的行为主要通过 agonism γ-氨基丁酸 (GABA) 受体介导的活动。相反, 氯胺酮, 氙和 n2O 被认为是发挥其作用的主要目标是 n-甲基-d-天门冬氨酸 (NMDA) 谷氨酸受体2,3。其他重要的药理靶点包括钾通道、乙酰胆碱受体和残留的谷氨酸受体、AMPA 和酸, 但是它们对麻醉作用的贡献程度仍然难以捉摸 (全面审查见4)。

在作用机制的变化程度和观察到的生理和神经效应的不同类型的代理人呈现得出的一般结论对其影响有意识加工困难。gaba 剂引起的意识丧失通常以大脑活动的全球变化为特征。这是明显的在高, 低频三角洲 (δ, 0.5-4 Hz) 波浪和减少在高频率, 伽玛 (γ, 35-45Hz) 活动在脑电图 (EEG), 类似慢波睡眠5,6以及流和葡萄糖代谢的广泛减少5,67891011.Boveroux et al13通过功能性磁共振成像 (fMRI) 显示异丙酚麻醉下的静止状态功能连通性显著下降, 从而增加了这种观察。相比之下, 游离麻醉药对大脑活动的影响却不那么清晰。在某些情况下, 它们与脑血流量和葡萄糖代谢的增加有关14,15,16,1718,19, 20,21当研究由 Rex 和同事22和 Laitio 和同事23,24查看氙气的效果提供了增加和减少大脑的证据活动.类似的不规则性在 EEG 信号的影响上可以看到25,26,27,28。约翰逊et al29显示了低频带三角洲和θ的总功率的增加, 以及在高密度 EEG 中进行氙麻醉的高频段伽玛的研究, 而在三角洲、θ和alpha 频带30,31和更高频率的氙气32。氙对电头皮活动的影响的这种可变性在α和 beta 频率范围可以被观察, 同时增加33和减少34被报告。

尽管存在上述的差异, 当人们试图查看大脑区域之间功能连通性的变化时, 这幅图开始变得更加一致。然而, 这种措施主要限于在空间或时间分辨率方面必须作出让步的方式。虽然使用 EEG 的研究显示出清晰, 并在一定程度上一致, 在麻醉/镇静期间功能网络的拓扑结构的变化与异丙酚35, 七氟醚,36和 N2O37,广泛间隔的传感器电平 EEG 数据没有足够的空间分辨率来有意义地定义和描绘相应的功能网络的顶点。相反, 研究利用功能磁共振成像和正电子发射断层扫描 (PET) 的优越空间分辨率, 发现类似的拓扑改变在 large-scale 函数连接到 EEG13,38,39 4041, 但没有足够的时间分辨率来表征α (8-13 Hz) EEG 带中的相振幅耦合和其他正在出现的重要特征的动态现象麻醉动作12,42。此外, 这些措施并没有直接评估电磁神经活动43

因此, 为了有意义地推进对与麻醉药作用相关的宏观过程的理解, 必须解决以前提到的调查的局限性;麻醉剂的限制性覆盖范围和非侵入性测量的时空分辨率不足。在此基础上, 作者概述了同时记录脑 (MEG) 和脑电图活动的健康志愿者的方法, 已开发为管理气体游离麻醉剂, 氙和 N2O。

MEG 被利用, 因为它是唯一的非侵入性的神经技术, 除了 EEG, 在毫秒范围内有一个时间分辨率。EEG 的问题是模糊的电磁场的头骨, 这是一个低通过滤器的外皮生成的活动, 而 MEG 是不太敏感的这个问题和问题的音量传导44。可以认为, MEG 具有更高的空间和源定位精度比脑电图45,46。EEG 不允许真正的无参考记录37,47, 但 MEG 确实如此。MEG 系统也通常记录的皮层活动比脑电图更广泛的频率范围, 包括高伽玛48(通常是 70-90 Hz), 这已经被建议参与麻醉剂的催眠作用, 包括氙29和 N2O28。meg 提供神经的活动, 由 eeg 转达的恭维, 因为 eeg 活动涉及细胞外电流, 而 meg 主要反映的磁场产生的细胞内流46,49. 此外, MEG 是特别敏感的电生理活动切向皮层, 而 EEG 主要记录细胞外活动径向到皮层49。因此, 结合 MEG 和 EEG 数据具有 super-additive 优势50

气体分离剂氙和 N2o 已选择的原因如下: 它们是无嗅的 (氙) 或基本上无嗅 (N2o), 因此可以很容易地利用在控制条件的存在, 当受聘于亚浓度。此外, 它们很适合在实验室环境中进行远程管理和监测, 因为它们的心肺-呼吸抑制剂效果不佳61。氙和较小程度的 N2O, 保留相对较低的最小肺泡浓度-(MAC)-清醒, 其中50% 的病人变得没有反应的口头命令的值为32.6 ± 6.1%51和 63.3 +-7.1%52分别。尽管氙和 N2O 都是 NMDA 受体拮抗剂, 他们不同地调制 EEG-氙似乎表现得更像一个典型的 gaba 剂时, 使用双频谱指数33,53,54(用于 electroencephalographically 监测麻醉深度的几种方法之一)。相比之下, N2O 产生的脑电图效果要低得多, 因为如果使用双频索引26, 则它的监视很差。由于氙有不同的报告脑电图性质的其他游离剂, 但具有相似的特点, 以更普遍研究的 gaba 剂, 其电生理研究有潜力揭示重要与意识的神经相关和相应的功能网络变化有关的特点。由于 nmda 受体介导的活动在学习和记忆中所起的关键作用, 以及它在一系列领域中的牵连作用, 在 nmda 受体上作用的药物可能会更多地揭示依附正常和改变意识的脑网络。精神疾病, 包括精神分裂症和抑郁症80

本文主要研究了在医院环境下, 同时记录 MEG 和脑电图的气体麻醉剂的要求和复杂的数据收集过程。基本数据分析在传感器水平概述和示例数据提供说明, 高保真录音可以获得最低的头部移动。对于随后的源成像和/或功能连接分析, 通常使用此类数据执行的许多潜在方法都没有描述, 因为这些方法在文献中得到了很好的描述, 并演示了各种选项分析55,56

Protocol

题为 “吸入氙和 N2O 对使用脑电图和 MEG 记录的脑活动的影响” 的研究获得批准 (批准号码: 260/12) 由阿尔弗雷德医院和史文朋科技大学伦理委员会和符合国家的要求关于人类研究中的道德操守的声明 (2007)。 1. 参加者的选择和前期学习要求 进行一次采访, 选择健康, 右手, 成年男性之间的年龄在20和40岁。 通过获得参与者的体质指数 (BMI) 和缺乏对 MRI 或 MEG (如…

Representative Results

本节利用从一个主题获得的数据, 以证明同时录制的典型特征和这些信息的潜力有助于更好地了解麻醉引起的意识改变状态。为了简化博览会, 结果显示为 i) post-anti-催吐剂管理基线 (基线 3), ii) 0.75 等 MAC 清醒峰值气体浓度 (3 级), N2O (47%) 和氙 (24%) 和 iii) 氙峰值气体浓度 42% (4级)。选择级别3和 4, 因为它们分别为 N2O 和氙的最高稳态级别。此外, 4 级氙涉及明?…

Discussion

本文概述了一个全面的协议, 同时记录的 MEG 和脑电图在麻醉气体交付与 N2O 和氙。这样的一个协议将是有价值的研究的电磁神经相关的麻醉诱导减少意识。该议定书还预计将推广到其他麻醉气体, 如七氟醚或异氟醚的交付。这将有助于更好地理解的共同的, 具体的和独特的宏观机制, 基础麻醉诱导减少意识的一系列麻醉剂有相当不同的分子模式和行动目标。理解麻醉剂的功能是神经科学的?…

開示

The authors have nothing to disclose.

Acknowledgements

作者想感谢 Mahla 的卡梅隆. 布拉德利, 雷切尔. 安妮和乔安娜. 斯蒂芬。另外还要感谢 Dr. 史蒂文 Mcguigan 作为第二个麻醉师的支持。佩帕帕斯提供了宝贵的麻醉护士监督。马库斯. 斯通欣然地将他的时间和专长用于编辑和拍摄该协议。Dr. Muthukumaraswamy 给出了关于数据分析和结果解释的具体建议。最后, 杰拉德戈特了许多令人振奋的讨论, 帮助执行了一些试点实验, 并在泡沫头支撑设计的中心。

这项研究得到了詹姆斯. 麦克唐纳合作赠款 #220020419 “重建意识”, 授予乔治 Mashour, 迈克尔阿维丹, 马克斯 Kelz 和大卫 Liley。

Materials

Neuromag TRIUX 306-channel MEG system Elekta Oy, Stockholm, SWEDEN N/A
Polhemus Fastrak 3D system Polhemus, VT, USA N/A
MEG compatible ER-1 insert headphones Etymotic Research Inc., IL, USA N/A
Low Density foam head cap, MEG compatible N/A N/A Custom made by research team
Harness, MEG compatible N/A ~3 m long, ~ 5 cm wide, cloth/jute strip to secure participant position on MEG chair
Ambu Neuroline 720 Single Patient Surface Electrodes Ambu, Copenhagen, Denmark 72015-K10
3.0T TIM Trio MRI system Siemens AB, Erlangen, GERMANY N/A
Asalab amplifier system ANT Neuro, Enschede, NETHERLANDS N/A this system is no longer manufactured and has been deprecated to 64 channel eego EEG amplifier
64-channel Waveguard EEG cap, MEG compatible ANT Neuro, Enschede, NETHERLANDS CA-138 size Medium
Magnetically shielded cordless battery box ANT Neuro, Enschede, NETHERLANDS N/A Magnetic shielding not provided by manufacturer – Modified by research team
OneStep ClearGel Electrode gel H+H Medizinprodukte GbR, Munster, GERMANY 154547
Akzent Xe Color Anesthesia Machine Stephan GmbH, Gackenbach, GERMANY N/A
Omron M6-Comfort Blood Pressure Monitor Omron Healthcare, Kyoto, JAPAN N/A
Xenon gas (99.999% purity) Coregas, Thomastown, VIC, AUSTRALIA N/A we estimate that we use approx 40 L (SATP) per participant
Medical Nitrous Oxide Coregas, Thomastown, VIC, AUSTRALIA N/A x2 G size cylinders
Medical Oxygen Coregas, Thomastown, VIC, AUSTRALIA N/A x2 G size cylinders
Medical Air Coregas, Thomastown, VIC, AUSTRALIA N/A x2 G size cylinders
Filter Respiratory & HMES with Capno Port Hypnobag Medtronic, MN, USA 352/5805
Yankauer High Adult Medtronic, MN, USA 8888-502005
Quadralite EcoMask anaesthetic masks Intersurgical Australia Pty Ltd 7093000/7094000 size 3 and size 4
Suction Canister Disp 1200 mL Medival Guardian Cardinal Health, OH, USA 65651-212
Catheter Mount Ext 4-13 cm with  90A elbow Medtronic, MN, USA 330/5667
Catheter IV Optiva 24g x 19 mm Yellow St Su Smiths Medical, MN, USA 5063-INT
Dexamethasone Mylan Injection Vials (4 mg/1 mL) Alphapharm Pty Ltd, Sydney, AUSTRALIA 400528517
Ondasetron (4 mg/2 mL) Alphapharm Pty Ltd, Sydney, AUSTRALIA 400008857
Medical resuscitation cart The medical resuscitation cart is configured according to the suggested minimal requirements for Adult resuscitation recommended in the document "Standards for Resuscitation: Clinical Practice and Education; June 2014) by the Australian and New Zealand Resuscitation councils and specifically endorsed by multiple professional health care organizations including the Australian and New Zealand College of Anaesthetists.  It includes all the necessary airway and circulatory equipment, as well as the associated pharmacuetical agents to enable full cardio-respiratory resuscitation and support in a non-clinical environment.  Full details can be found at https://resus.org.au/standards-for-resuscitation-clinical-practice-and-education/
Maxfilter Version 2.2 Elekta Oy, Stockholm, SWEDEN N/A Data analysis software provided with Elekta's Neuromag TRIUX MEG system

参考文献

  1. Hudetz, A., Hudetz, A., Pearce, R. . Suppressing the Mind. , 178-189 (2010).
  2. Franks, N. P., Dickinson, R., de Sousa, S. L., Hall, A. C., Lieb, W. R. How does xenon produce anaesthesia?. Nature. 396 (6709), 324 (1998).
  3. Jevtović-Todorović, V., Todorović, S. M., Mennerick, S., Powell, S., Dikranian, K., Benshoff, N., Zorumski, C. F., Olney, J. W. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med. 4 (4), 460-463 (1998).
  4. Alkire, M. T., Hudetz, A. G., Tononi, G. Consciousness and Anesthesia. NIH Public Access. 322 (5903), 876-880 (2009).
  5. Fiset, P., et al. Brain Mechanisms of Propofol-Induced Loss of Consciousness in Humans: a Positron Emission Tomographic Study. The J Neurosci. 19 (13), 5506-5513 (1999).
  6. Schlünzen, L., et al. Effects of subanaesthetic and anaesthetic doses of sevoflurane on regional cerebral blood flow in healthy volunteers. A positron emission tomographic study. Acta Anaesthesiologica Scandinavica. 48 (10), 1268-1276 (2004).
  7. Alkire, M. T., et al. Cerebral Metabolism during Propofol Anesthesia in Humans Studied with Positron Emission Tomography. Anesthesiology. 82, 393-403 (1995).
  8. Alkire, M. T., Haier, R. J., Shah, N. K., Anderson, C. T. Positron Emission Tomography Study of Regional Cerebral Metabolism in Humans during Isoflurane Anesthesia. Anesthesiology. 86, 549-557 (1997).
  9. Alkire, M. T., et al. Functional Brain Imaging during Anesthesia in Humans. Effects of Halothane on Global and Regional Cerebral Glucose Metabolism. Anesthesiology. 90, 701-709 (1999).
  10. Kaike, K. K., et al. Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiology. 6, 1358-1370 (2002).
  11. Prielipp, R. C., et al. Dexmedetomidine-induced sedation in volunteers decreases regional and global cerebral blood flow. Anesthesia and analgesia. 95 (4), 1052-1059 (2002).
  12. Mukamel, E. A., et al. A transition in brain state during propofol-induced unconsciousness. J Neurosci. 34 (3), 839-845 (2014).
  13. Boveroux, P., Vanhaudenhuyse, A., Phillips, C. Breakdown of within- and between-network Resting State during Propofol-induced Loss of Consciousness. Anesthesiology. 113 (5), 1038-1053 (2010).
  14. Pelligrino, D. A., Miletich, D. J., Hoffman, W. E., Albrecht, R. F. Nitrous oxide markedly increases cerebral cortical metabolic rate and blood flow in the goat. Anesthesiology. 60 (5), 405-412 (1984).
  15. Hansen, T. D., Warner, D. S., Todd, M. M., Vust, L. J. The role of cerebral metabolism in determining the local cerebral blood flow effects of volatile anesthetics: evidence for persistent flow-metabolism coupling. J Cereb Blood Flow Metab. 9, 323-328 (1989).
  16. Roald, O. K., Forsman, M., Heier, M. S., Steen, P. A. Cerebral effects of nitrous oxide when added to low and high concentrations of isoflurane in the dog. Anesth Analg. 72 (1), 75-79 (1991).
  17. Algotsson, L., Messeter, K., Rosén, I., Holmin, T. Effects of nitrous oxide on cerebral haemodynamics and metabolism during isoflurane anaesthesia in man. Acta Anaesthesiol Scand. 36 (1), 46-52 (1992).
  18. Field, L. M., Dorrance, D. E., Krzeminska, E. K., Barsoum, L. Z. Effect of nitrous oxide on cerebral blood flow in normal humans. Br J Anaesth. 70 (2), 154-159 (1993).
  19. Matta, B. F., Lam, A. M. Nitrous oxide increases cerebral blood flow velocity during pharmacologically induced EEG silence in humans. J Neurosurg Anesthesiol. 7 (2), 89-93 (1995).
  20. Langsjo, J. W., et al. Effects of subanesthetic doses of ketamine on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology. 99 (3), 614-623 (2003).
  21. Reinstrup, P., et al. Regional cerebral metabolic rate (positron emission tomography) during inhalation of nitrous oxide 50% in humans. Br J Anaesth. 100 (1), 66-71 (2008).
  22. Rex, S., et al. Positron emission tomography study of regional cerebral blood flow and flow-metabolism coupling during general anaesthesia with xenon in humans. Br J Anaesth. 100 (5), 667-675 (2008).
  23. Laitio, R. M., et al. Effects of xenon anesthesia on cerebral blood flow in humans. Anesthesiology. 106 (6), 1128-1133 (2007).
  24. Laitio, R. M., et al. The effects of xenon anesthesia on the relationship between cerebral glucose metabolism and blood flow in healthy subjects: A positron emission tomography study. Anesthesia and Analgesia. 108 (2), 593-600 (2009).
  25. Yamamura, T., Fukuda, M., Takeya, H., Goto, Y., Furukawa, K. Fast oscillatory EEG activity induced by analgesic concentrations of nitrous oxide in man. Anesth Analg. 60 (5), 283-288 (1981).
  26. Rampil, I. J., Kim, J. S., Lenhardt, R., Negishi, C., DI, S. Bispectral EEG index during nitrous oxide administration. Anesthesiology. 89 (3), 671-677 (1998).
  27. Maksimow, A., et al. Increase in high frequency EEG activity explains the poor performance of EEG spectral entropy monitor during S-ketamine anesthesia. Clinical Neurophysiology. 117 (8), 1660-1668 (2006).
  28. Foster, B. L., Liley, D. T. J. Effects of nitrous oxide sedation on resting electroencephalogram topography. Clinical Neurophysiology. 124 (2), 417-423 (2013).
  29. Johnson, B. W., Sleigh, J. W., Kirk, I. J., Williams, M. L. High-density EEG mapping during general anaesthesia with Xenon and propofol: A pilot study. Anaesthesia and Intensive Care. 31 (2), 155-163 (2003).
  30. Foster, B. L., Bojak, I., Liley, D. T. J. Population based models of cortical drug response: Insights from anaesthesia. Cognitive Neurodynamics. 2 (4), 283-296 (2008).
  31. Kuhlmann, L., Liley, D. T. J. Assessing nitrous oxide effect using electroencephalographically-based depth of anesthesia measures cortical state and cortical input. J Clin Monit Comput. , (2017).
  32. Goto, T., et al. Bispectral analysis of the electroencephalogram does not predict responsiveness to verbal command in patients emerging from xenon anaesthesia. Br J Anaesth. 85 (3), 359-363 (2000).
  33. Laitio, R. M., Kaskinoro, K., Maksimow, A., Kangas, K., Scheinin, H. Electroencephalogram during Single-agent Xenon. Anesthesiology. 18 (1), 63-70 (2008).
  34. Hartmann, A., Dettmers, C., Schuier, F. J., Wassmann, H. D., Schumacher, H. W. Effect of stable xenon on regional cerebral blood flow and the electroencephalogram in normal volunteers. Stroke. 22 (2), 182-189 (1991).
  35. Lee, U., Müller, M., Noh, G. J., Choi, B., Mashour, G. a Dissociable network properties of anesthetic state transitions. Anesthesiology. 114 (4), 872-881 (2011).
  36. Ku, S. W., Lee, U., Noh, G. J., Jun, I. G., Mashour, G. A. Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients. PLoS ONE. 6 (10), 1-9 (2011).
  37. Kuhlmann, L., Foster, B. L., Liley, D. T. J. Modulation of Functional EEG Networks by the NMDA Antagonist Nitrous Oxide. PLoS ONE. 8 (2), (2013).
  38. Greicius, M. D., et al. Persistent default-mode network connectivity during light sedation. Human Brain Mapping. 29 (7), 839-847 (2008).
  39. Deshpande, G., Sathian, K., Hu, X. Assessing and compensating for zero-lag correlation effects in time-lagged granger causality analysis of fMRI. IEEE Transactions on Biomedical Engineering. 57 (6), 1446-1456 (2010).
  40. Schrouff, J., et al. Brain functional integration decreases during propofol-induced loss of consciousness. NeuroImage. 57 (1), 198-205 (2011).
  41. Langsjo, J. W., et al. Returning from Oblivion: Imaging the Neural Core of Consciousness. J Neurosci. 32 (14), 4935-4943 (2012).
  42. Mukamel, E. A., Wong, K. F., Prerau, M. J., Brown, E. N., Purdon, P. L. Phase-based measures of cross-frequency coupling in brain electrical dynamics under general anesthesia. Conf Proc IEEE Eng Med Biol Soc, EMBS. 6454, 1981-1984 (2011).
  43. Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature Reviews Neuroscience. 453 (June), 869-878 (2008).
  44. Nunez, P. L., Srinivasan, R. . Electric fields of the brain: the neurophysics of EEG. , (2006).
  45. Hämäläinen, M. S., Hari, R., Ilmoniemi, R. J., Knuutila, J., Lounasmaa, O. V. Magnetoencephalography – theory, instrumentation, and applications to noninvasivee studies of the working human brain. Rev Modern Physics. 65 (2), 413-505 (1993).
  46. Nunez, P. L., Srinivasan, R. A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness. Clinical Neurophysiology. 117 (11), 2424-2435 (2006).
  47. Kayser, J., Tenke, C. E. In search of the Rosetta Stone for scalp EEG: Converging on reference-free techniques. Clinical Neurophysiology. 121 (12), 1973-1975 (2010).
  48. Barkley, G. L., Baumgartner, C. MEG and EEG in epilepsy. J Clin Neurophysiol. 20 (3), 163-178 (2003).
  49. Parra, L. C., Bikson, M. Model of the effect of extracellular fields on spike time coherence. . , 4584-4587 (2004).
  50. Liu, A. K., Dale, A. M., Belliveau, J. W. Monte Carlo simulation studies of EEG and MEG localization accuracy. Human Brain Mapping. 16 (1), 47-62 (2002).
  51. Cullen, S. C., Eger, E. I., Cullen, B. F., Gregory, P. Observations on the anesthetic effect of the combination of xenon and halothane. Anesthesiology. 31 (4), 305-309 (1969).
  52. Hornbein, T. F., et al. The minimum alveolar concentration of nitrous oxide in man. Anesth Analg. 61 (7), 553-556 (1982).
  53. Fahlenkamp, A. V., et al. Evaluation of bispectral index and auditory evoked potentials for hypnotic depth monitoring during balanced xenon anaesthesia compared with sevoflurane. Br J Anaesth. 105 (3), 334-341 (2010).
  54. Stoppe, C., et al. AepEX monitor for the measurement of hypnotic depth in patients undergoing balanced xenon anaesthesia. Br J Anaesth. 108 (1), 80-88 (2012).
  55. Huang, M. X., et al. Commonalities and Differences among Vectorized Beamformers in Electromagnetic Source Imaging. Brain Topography. 16 (3), 139-158 (2004).
  56. Bastos, A. M., Schoffelen, J. M. A Tutorial Review of Functional Connectivity Analysis Methods and Their Interpretational Pitfalls. Frontiers in systems neuroscience. 9 (January), 175 (2015).
  57. Bazanova, O. M., Nikolenko, E. D., Barry, R. J. Reactivity of alpha rhythms to eyes opening (the Berger effect) during menstrual cycle phases. International Journal of Psychophysiology. , 0 (2017).
  58. Schaefer, M. S., et al. Predictors for postoperative nausea and vomiting after xenon-based anaesthesia. Br J Anaesth. 115 (1), 61-67 (2015).
  59. Gan, T. J., et al. Consensus guidelines for the management of postoperative nausea and vomiting. Anesthesia and Analgesia. 118 (1), 85-113 (2014).
  60. De Vasconcellos, K., Sneyd, J. R. Nitrous oxide: Are we still in equipoise? A qualitative review of current controversies. Br J Anaesth. 111 (6), 877-885 (2013).
  61. Sanders, R. D., Ma, D., Maze, M. Xenon: Elemental anaesthesia in clinical practice. British Medical Bulletin. 71, 115-135 (2004).
  62. da Silva, R. M. Syncope: Epidemiology, etiology, and prognosis. Frontiers in Physiology. 5 (DEC), 8-11 (2014).
  63. Dittrich, A., Lamparter, D., Maurer, M. 5D-ASC: Questionnaire for the assessment of altered states of consciousness. A short introduction. , (2010).
  64. Studerus, E., Gamma, A., Vollenweider, F. X. Psychometric evaluation of the altered states of consciousness rating scale (OAV). PLoS ONE. 5 (8), (2010).
  65. Oostenveld, R., Fries, P., Maris, E., Schoffelen, J. M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience. 2011, (2011).
  66. Stolk, A., Todorovic, A., Schoffelen, J. M., Oostenveld, R. Online and offline tools for head movement compensation in MEG. NeuroImage. 68, 39-48 (2013).
  67. Cimenser, A., et al. Tracking brain states under general anesthesia by using global coherence analysis. Proc Natl Acad Sci. 108 (21), 8832-8837 (2011).
  68. Hall, S. D., et al. GABA(A) alpha-1 subunit mediated desynchronization of elevated low frequency oscillations alleviates specific dysfunction in stroke – A case report. Clinical Neurophysiology. 121 (4), 549-555 (2010).
  69. Hall, S. D., et al. The role of GABAergic modulation in motor function related neuronal network activity. NeuroImage. 56 (3), 1506-1510 (2011).
  70. Cornwell, B. R., et al. Synaptic potentiation is critical for rapid antidepressant response to ketamine in treatment-resistant major depression. Biological Psychiatry. 72, 555-561 (2012).
  71. Saxena, N., et al. Enhanced Stimulus-Induced Gamma Activity in Humans during Propofol-Induced Sedation. PLoS ONE. 8 (3), 1-7 (2013).
  72. Quaedflieg, C. W. E. M., Munte, S., Kalso, E., Sambeth, A. Effects of remifentanil on processing of auditory stimuli: A combined MEG/EEG study. J Psychopharmacol. 28 (1), 39-48 (2014).
  73. Muthukumaraswamy, S. D., Shaw, A. D., Jackson, L. E., Hall, J., Moran, R., Saxena, N. Evidence that Subanesthetic Doses of Ketamine Cause Sustained Disruptions of NMDA and AMPA-Mediated Frontoparietal Connectivity in Humans. J Neurosci. 35 (33), 11694-11706 (2015).
  74. Bruhn, J., Myles, P. S., Sneyd, R., Struys, M. M. R. F. Depth of anaesthesia monitoring: What’s available, what’s validated and what’s next?. Br J Anaesth. 97 (1), 85-94 (2006).
  75. Punjasawadwong, Y., Phongchiewboon, A., Bunchungmongkol, N. Bispectral index for improving anaesthetic delivery and postoperative recovery (Review) Bispectral index for improving anaesthetic delivery and postoperative recovery. Cochrane Library. 10, 10-12 (2010).
  76. Taulu, S., Kajola, M., Simola, J. Suppression of interference and artifacts by the Signal Space Separation Method. Brain Topography. 16 (4), 269-275 (2004).
  77. Purdon, P. L., et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci U S A. 110 (12), 1142-1151 (2013).
  78. Mhuircheartaigh, R. N., et al. Cortical and Subcortical Connectivity Changes during Decreasing Levels of Consciousness in Humans: A Functional Magnetic Resonance Imaging Study using Propofol. J Neurosci. 30 (27), 9095-9102 (2010).
  79. Pandit, J. J., et al. 5th National Audit Project (NAP5) on accidental awareness during general anaesthesia: summary of main findings and risk factors. Br J Anaesth. 113 (4), 549-559 (2014).
  80. Lakhan, S. E., Caro, M., Hadzimichalis, N. NMDA Receptor Activity in Neuropsychiatric Disorders. Frontiers in Psychiatry. 4 (Junne), 52 (2013).

Play Video

記事を引用
Pelentritou, A., Kuhlmann, L., Cormack, J., Woods, W., Sleigh, J., Liley, D. Recording Brain Electromagnetic Activity During the Administration of the Gaseous Anesthetic Agents Xenon and Nitrous Oxide in Healthy Volunteers. J. Vis. Exp. (131), e56881, doi:10.3791/56881 (2018).

View Video