Flow chemistry carries environmental and economic advantages by leveraging superior mixing, heat transfer and cost benefits. Herein, we provide a blueprint to transfer chemical processes from batch to flow mode. The reaction of diphenyldiazomethane (DDM) with p-nitrobenzoic acid, conducted in batch and flow, was chosen for proof of concept.
Continuous flow technology has been identified as instrumental for its environmental and economic advantages leveraging superior mixing, heat transfer and cost savings through the "scaling out" strategy as opposed to the traditional "scaling up". Herein, we report the reaction of diphenyldiazomethane with p-nitrobenzoic acid in both batch and flow modes. To effectively transfer the reaction from batch to flow mode, it is essential to first conduct the reaction in batch. As a consequence, the reaction of diphenyldiazomethane was first studied in batch as a function of temperature, reaction time, and concentration to obtain kinetic information and process parameters. The glass flow reactor set-up is described and combines two types of reaction modules with "mixing" and "linear" microstructures. Finally, the reaction of diphenyldiazomethane with p-nitrobenzoic acid was successfully conducted in the flow reactor, with up to 95% conversion of the diphenyldiazomethane in 11 min. This proof of concept reaction aims to provide insight for scientists to consider flow technology's competitiveness, sustainability, and versatility in their research.
Green chemistry and engineering are creating a culture change for the future direction of industry1,2,3,4. Continuous flow technology has been identified as instrumental for its environmental and economic advantages leveraging superior mixing, heat transfer, and cost savings through the "scaling out" strategy as opposed to the traditional "scaling up"5,6,7,8,9,10.
Although the industries producing high-value products like the pharmaceutical industry have long favored batch processing, the advantages of flow technology have become attractive due to mounting economic competition and commercial production benefits11. For example, when scaling up batch processes, pilot scale units must be built and operated to ascertain accurate heat and mass transfer mechanisms. This is hardly sustainable and subtracts substantially from the marketable patent life of the product. In contrast, continuous flow processing allows for the advantages of scale out, eliminating the pilot-plant phase and engineering associated with production scale-a significant financial incentive. Beyond the economic impact, continuous technology also enables atomic and energy efficient processes. For instance, enhanced mixing improves mass transfer for biphasic systems, leading to improved yields, catalyst recovery strategies, and subsequent recycling schemes. Additionally, the ability to accurately manage the reaction temperature leads to precise control of reaction kinetics and product distribution12. The enhanced process control, quality of product (product selectivity) and reproducibility are impactful both from environmental and financial standpoints.
Flow reactors are available commercially with a wide variety of sizes and designs. In addition, customization of reactors to meet process needs can easily be achieved. Herein, we report experiments conducted in a glass continuous flow reactor (Figure 1). The assembly of microstructures (161 mm x 131 mm x 8 mm) made of glass is compatible with a wide range of chemicals and solvents and is corrosion-resistant over a wide range of temperatures (-25–200 °C) and pressures (up to 18 bar). The microstructures and their arrangement were designed for multi-injection, high-performance mixing, flexible residence time, and precise heat transfer. All of the microstructures are equipped with two fluidic layers (-25–200 °C, up to 3 bar) for heat exchange on either side of the reaction layer. Heat transfer rates are proportional to the heat transfer surface area and inversely proportional to its volume. Thus, these microstructures facilitate an optimum surface-to-volume ratio for improved heat transfer. There are two types of microstructures (i.e. modules): "mixing" modules and "linear" modules (Figure 2). The heart-shaped "mixing" modules are designed to induce turbulence and maximize mixing. In contrast, the linear modules provide additional residence time.
As proof of concept, we selected the well-described reaction of diphenyldiazomethane with carboxylic acids13,14,15,16,17. The reaction scheme is shown in Figure 3. The initial transfer of the proton from the carboxylic acid to the diphenyldiazomethane is slow and is the rate-determining step. The second step is rapid and yields the reaction product and nitrogen. The reaction was initially investigated to compare relative acidity of organic carboxylic acids in organic solvent (aprotic and protic). The reaction is first-order in the diphenyldiazomethane and first-order in carboxylic acids.
Experimentally, the reaction was conducted in presence of large excess of carboxylic acid (10 molar equivalents). As a consequence, the rate was pseudo first order with respect to the diphenyldiazomethane. The second order rate constant can then be obtained by dividing the experimentally obtained pseudo first order rate constant by the initial concentration of the carboxylic acid. Initially, the reaction of diphenyldiazomethane with benzoic acid (pKa = 4.2) was investigated. In batch, the reaction appeared to be relatively slow, reaching about 90% conversion in 96 minutes. As the reaction rate is directly proportional to the acidity of the carboxylic acid, we chose as a reaction partner the more acidic carboxylic acid, p-nitrobenzoic acid (pKa =3.4) to shorten the reaction time. The reaction of p-nitrobenzoic acid with diphenyldiazomethane in anhydrous ethanol was thus investigated in batch and flow (Figure 4). The results are provided in detail in the following section.
When the reaction is carried out in ethanol, three products can be formed: (i) benzhydryl-4-nitrobenzoate, which results from the reaction of p-nitrobenzoic acid with the diphenylmethane diazonium intermediate; (ii) benzhydryl ethyl ether that is obtained from reaction of the solvent, ethanol, with the diphenylmethane diazonium; and (iii) nitrogen. The product distribution was not studied as it is well documented in literature; rather we focused our attention to the technology transfer of the batch reaction to continuous flow13,14,15. Experimentally the disappearance of the diphenyldiazomethane was monitored. The reaction proceeds with a vivid color change, which can be visually observed by UV-Vis spectroscopy. This results from the fact that the diphenyldiazomethane is a strongly purple compound whereas all other products from the reaction are colorless. Therefore, the reaction can be visually monitored on a qualitative basis and quantitatively followed by UV spectroscopy (i.e. disappearance of the diphenyl diazomethane absorption at 525 nm). Herein, we first report the reaction of diphenyldiazomethane and p-nitrobenzoic acid in ethanol in batch as a function of time. Secondly, the reaction was successfully transferred and carried out into the glass flow reactor. The progress of the reaction was ascertained by monitoring the disappearance of diphenyldiazomethane using UV-spectroscopy (in batch and flow modes).
Health Warnings and Specification of Reagents
Benzophenone Hydrazone: May cause irritation of the digestive tract. The toxicological properties of this substance have not been fully investigated. May cause respiratory tract irritation. The toxicological properties of this substance have not been fully investigated. May cause skin irritation and eye irritation18.
Activated manganese oxide (MnO2): (Health MSDS rating of 2) Hazardous in case of skin contact, eye contact, ingestion, and inhalation19.
Dibasic potassium phosphate (KH2PO4): (Health MSDS rating of 2) Hazardous in case of skin contact, eye contact, ingestion, and inhalation20.
Dichloromethane: (Health MSDS rating of 2, Fire rating of 1) Very hazardous in case of eye contact (irritant), of ingestion, of inhalation. Hazardous in case of skin contact (irritant, permeator). Inflammation of the eye is characterized by redness, watering, and itching21.
1. Synthesis of Diphenyldiazomethane (DDM):
2. Purification of DDM:
3. Preparing Solution of DDM for Continuous Flow:
4. Preparation of 0.1 M Stock Solution of p-nitrobenzoic Acid:
5. Preparation of the Continuous Flow Reactor:
6. Setting Up the .01 M DDM ISCO 2 Pump:
7. Setting Up the .1 M p -nitrobenzoic Acid ISCO 1 Pump:
8. Conducting the Reaction in Flow with 10:1 Molar Equivalence of p-nitrobenzoic acid and DDM:
9. Cleaning the Continuous Flow Reactor:
Batch Reaction
Diphenyldiazomethane was prepared according to literature28,29. The compound was crystallized from petroleum ether:ethyl acetate (100:2) and the purple crystalline solid was analyzed by H1 NMR, melting point, and MS. The analyses were consistent with the structure and reported literature values.
The reaction of diphenyldiazomethane (1.0 mM) with benzoic acid (10 mM) in anhydrous ethanol was carried out at 21 °C in dry ethanol. The progress of the reaction was monitored using UV-Vis spectrometry (λmax = 525 nm). After 96 minutes, about 90% of the diphenyldiazomethane was consumed. The pseudo-first order rate constant was calculated to be 0.0288 min-1 and the resulting second rate constant to be 0.58 mol-1.min-1.L. The second-order rate constant is in agreement with literature values (~ 0.7 mol-1.min-1.L at 26 °C)17. The reaction was then investigated with the more acidic p-nitrobenzoic acid. The reaction of diphenyldiazomethane (1 mM) with p-nitrobenzoic acid (10mM) in anhydrous ethanol was conducted at 21 °C and monitored in-situ by UV-Vis at λ = 525 nm (Figure 5). UV-vis spectra were taken at 1.5 minutes intervals. Figure 6 shows a representative spectrum of the UV-absorbance of diphenyldiazomethane as a function of the progression of the reaction with p-nitrobenzoic acid in anhydrous ethanol.
Figures 7 and 8 show the concentration of DDM as a function of time and the pseudo-first order ln(Abs/Abs0) as a function of time. From the latter plot, an apparent first-rate of reaction of 0.135 min-1 was obtained, which corresponds to a second order rate constant of 1.80 mol-1.min-1.L. The data are consistent with reported literature values17. Importantly, the reaction reaches about 94% completion within 20 min (Figure 8), which is amenable to the flow reactor. The next step was to transfer the reaction to the glass flow reactor.
Flow reaction
The schematic and photograph of the flow process used herein is shown in Figure 9. The two reactant streams are introduced into a pre-heating/cooling module (1 and 2 in Figure 9). Modules 1 and 2 allows to control the temperature of each incoming feeds. The mixing of the two reactant feeds occurs at the module 3 (Figure 9) before proceeding into three mixing modules (4, 5, & 6 in Figure 9) and two linear modules (7 & 8 in Figure 9). Each reactant stream was independently controlled and introduced via syringe pumps. The reactant solutions were each prepared with internal standards (1vol% toluene/ortho-xylene) to measure accurately the concentrations of reactant. The residence times of the reactions are controlled by changing the total flow rate. For example, residence times of 1 min 52 s, 3 min 44 s, and 11 min 12 s corresponded to total flow rates of 30 mL/min, 15 mL/min, and 5 mL/min.
Operationally, two stock solutions were prepared: (1) A solution of diphenyldiazomethane in anhydrous ethanol (0.02M) and (2) A solution of p-nitrobenzoic acid (0.1 M). Both solutions were fed into the reactor (Feeds 1 & 2 in Figure 9) at rate of 1.42 mL/min of and 3.58 mL/min respectively. Accounting for the initial concentrations of diphenyldiazomethane and p-nitrobenzoic and their respective flow-rate, the molar ratio of diphenyldiazomethane to p-nitrobenzoic acid was 1 to 10. Experimentally, the total flow rate was approximately 5 mL/min leading to a residence time of 11 minutes. Aliquots were taken as a function of time and analyzed by GC-FID (gas chromatography with flame ionization detector) and by UV-Vis spectroscopy. GC-FID analyses were used to measure the accurate concentration ratio of reagents using internal standards. Toluene was used as the internal standard (0.107 M) in the diphenyldiazomethane solution and ortho-xylene was present in the p-nitrobenzoic acid (0.072 M). The UV-Vis analyses quantitatively measured the progress of the reaction by monitoring the disappearance of diphenyldiazomethane as a function of time (the method was established and described for the batch reaction).
The results shown in Figure 10 shows that 95% completion is reached within the 11 min residence time. To reach complete conversion, the residence time can be extended to 33 min or less. Operationally, full conversion can be obtained with slower flow rate (as shown) or by increasing residence time (additional microstructures/modules) and/or increase of temperature. However, the proof of concept shows that the reaction can successfully be conducted in flow with 95% conversion in 11 min.
Figure 1: Schematic of continuous flow microstructures. Please click here to view a larger version of this figure.
Figure 2: Mixing (left) and linear (right) microstructures. Please click here to view a larger version of this figure.
Figure 3: Reaction of diphenyldiazomethane with an acid (X-H). Please click here to view a larger version of this figure.
Figure 4: Reaction of diphenyldiazomethane with p-nitrobenzoic acid in anhydrous ethanol. Please click here to view a larger version of this figure.
Figure 5: Reaction of diphenyldiazomethane (1eq) with ethanol and p-nitrobenzoic acid (10 eq). Please click here to view a larger version of this figure.
Figure 6: Absorbance as a function of wavelength for the reaction of diphenyldiazomethane with p-nitrobenzoic acid. The maximum absorbance for diphenyldiazomethane is 525 nm. Each line represents one spectra taken at different time intervals (each 1.5 min) from time = 0. Please click here to view a larger version of this figure.
Figure 7: pseudo-first order reaction (ln(Abs/Abs0) vs. Time (min) as a function of time for the reaction of diphenyldiazomethane and p-nitrobenzoic acid at 21 °C in ethanol in batch. Please click here to view a larger version of this figure.
Figure 8: Concentration of diphenyldiazomethane as a function of time for the reaction of diphenyldiazomethane and p-nitrobenzoic acid at 21 °C in ethanol in batch. Please click here to view a larger version of this figure.
Figure 9: Schematic of the continuous flow reactor. Please click here to view a larger version of this figure.
Figure 10: Concentration of diphenyldiazomethane as a function of time for the reaction of diphenyldiazomethane and p-nitrobenzoic acid at 21 °C in ethanol in flow. Please click here to view a larger version of this figure.
Figure 11: Reaction of diazoketone, tert-butyl (S)-(4-diazo-3-oxo-1-phenylbutan-2-yl) Carbamate. Please click here to view a larger version of this figure.
Flow chemistry has gained much attention recently with an average of about 1,500 publications on the topic annually in research areas of Chemistry (29%) and Engineering (25%). Many successful processes have been conducted in flow. In numerous cases, flow chemistry was demonstrated to exhibit superior performances to batch for many applications such as the preparations of pharmaceutically active ingredients30,31, natural products32, and specialty, high-value chemicals like high-performance polymers33,34,35,36. We leveraged and reported continuous flow processes for the preparation and reaction of diazoketone37, Meerwein-Ponndorf-Verley reduction of ketone and aldehydes to alcohols38 and metal-catalyzed Homo-Nazarov cyclization39. Especially interesting is the example of the preparation and reaction of thermally unstable and highly reactive anhydride in the reaction of diazoketone, tert-butyl (S)-(4-diazo-3-oxo-1-phenylbutan-2-yl) carbamate (Figure 11)37,40.
Because of the enhanced temperature control and mixing, the flow technology was demonstrated to be superior to batch process for the following criteria: (i) the implementation of a less expensive mixed anhydride, (ii) the use of the relatively safer trimethyl silyldiazomethane than diazomethane, (iii) the temperature, 4 °C in flow instead of -20 °C in batch with consistent 100% yield, (iv) shortened reaction time (10 min), and (v) significant reduction in waste-stream (atomic economy).
Herein, we have provided a blueprint for the successful transfer of diphenyldiazomethane with p-nitrobenzoic acid reaction from batch mode to continuous flow. Our blueprint emphasizes that it is critical to conduct studies in batch mode to establish accurate reaction rate, the reaction profile as a function of time, and the optimum concentration and temperature. These parameters are essential to take into consideration prior to transferring the reaction to continuous flow technology. The design of the reactor was described in detail and was tailored to be amenable with regards to the reaction characteristics. Finally, the reaction was successfully conducted in flow and monitored qualitatively by visual observation (i.e. loss of color). Quantitative assessment of the progress of the reaction (e.g. disappearance of diphenyldiazomethane) was obtained by UV-Vis. About 94% consumption was achieved with 11 min residence time in flow at 21 °C.
Limitation and considerations
The formation of solids (i.e. precipitates) during the reaction is an important parameter when considering flow processes. In those instances, one must consider: (i) modifying the protocol in batch-mode to maintain homogeneity throughout the reaction (i.e. changing reagents, solvent, temperature, etc.) or (ii) design the reactor to allow for the processing of slurries. The second option may be viable with optimization and tailored reactor design. In practice, the two most limiting factors for flow processes are (i) viscous solutions: the ability to pump viscous liquids and the resulting pressure drop are often prohibitive and (ii) using heterogeneous (solid/liquid) feeding streams. It is difficult to consistently and effectively pump fine suspensions (for example in the cases of heterogeneous catalyst). In addition, accumulation of particles in the reactor can lead to blockage, and ultimately failure.
Overall, flow chemistry has been demonstrated to be superior (to batch processes) for synthetic transformations that (i) require precise temperature control (i.e. avoid hot spot, competitive reaction, etc.) (ii) involve the formation of highly reactive or unstable intermediates, or (iii) require enhanced mixing with multi-liquid phases for example. The resulting increase of product quality and reproducibility (via enhanced and precise control of the process parameters) is impactful both from an environmental and a financial standpoint. Flow technology may not be the universal solution but can open new avenues for chemical pathways that were deemed not viable in batch (i.e. too reactive or too unstable intermediates) as well as provide process optimization in terms of energy consumption, atom economy and downstream-purification. To conclude, it is a powerful tool to effectively conduct multi-step processes for high-value added chemicals.
The authors have nothing to disclose.
We would like to thank Corning for the gift of the glass flow reactor.
Thermometer | HB-USA/ Enviro-safe | Any other instrument scientific company provider works | |
Benzophenone hydrazone | Sigma-Aldrich | Store at 2-8 °C, 96% purity | |
Activated MnO2 | Fluka | ≥ 90% purity, harmful if inhaled or swallowed. Refer to MSDS for more safety precautions | |
Dibasic KH2PO4 | Sigma-Aldrich | Serious eye damage, respiratory irritant. Refer to MSDS for more safety precautions | |
Dichloromethane (DCM) | Alfa Aesar | ≥ 99.7% purity, argon packed | |
Rotovap | Büchi | accessory parts include Welch self-cleaning dry vacuum model 2027, and Neuberger KNP dry ice trap | |
Bump trap | Chemglass | Any other instrument scientific company provider works | |
Neutral Silica Gel (50-200 mM) | Acros Organic/ Sorbent Technology | Respiratory irritant if inhaled, refer to MSDS for more safety precautions | |
Inert Argon Gas | Airgas | Always ensure proper regulator is in place before using | |
Medium Porosity Sintered Funnel Glass Filter | Sigma-Aldrich | Any other instrument scientific company provider works | |
Aluminum Foil | Reynolds Wrap | Any other company works. Used to prevent photolytic damage towards DDM | |
Para-NO2 benzoic acid | Sigma-Aldrich | Skin contact irritant, eye irritant, respiratory irritant. Refer to MSDS for more safety precautions | |
Pure ethyl alcohol (200 proof) | Sigma-Aldrich | ≥ 99.5% purity, anhydrous. Highly flammable | |
Toluene | Sigma-Aldrich | ≥ 99.8% purity, anhydrous. Skin permeator, flammable | |
Ortho-xylene | Sigma-Aldrich | 99% purity, anhydrous. Toxic to organs and CNS. Adhere to specifications dictated within MSDS | |
Diphenyl diazo methane | Produced in-house | Respiratory irritant, refer to MSDS for more safety precautions | |
Corning reactor | Corning Proprietary | Manufactured in 2009. model number MR 09-083-1A | |
Stop watch | Traceable Calibration Control Company | Any other company that provides monitoring with laboratory grade accredidation works | |
Analytical balance | Denver Instruments | Model M-2201, or any analytical balance that has sub-milligram capabilities | |
Dram vials | VWR | 2 dram, 4 dram, and 6 dram vials | |
Micropipettes | Eppendorf | 2-20 μL and 100-1000 μL micropipettes work | |
Glass pipettes | VWR | Any other instrument scientific company provider works | |
GC-MS | Shimadzu GC | Software associated: GC Real Time Analysis | |
GC vials | VWR | Any other providing company works | |
Beakers | Pyrex | 500 mL beakers | |
Syringe pumps | Sigma Aldrich | Teledyne Isco Model 500D | |
Relief valve | Swagelok | Spring loaded relieve valve | |
One-way valves | Nupro | 10 psi grade | |
Two-way straight valves | HiP | 15,000 psi grade |