概要

小鼠胚胎干细胞向皮质 Interneuron 前体细胞的分化

Published: December 03, 2017
doi:

概要

本议定书描述了一种方法, 产生皮层 interneuron 祖细胞和后有丝分裂 interneuron 前体从小鼠胚胎干细胞使用改良的胚体-单层法。这些祖/前体可用于体外或荧光分类和移植到新生儿大脑皮层研究命运确定, 或用于治疗应用。

Abstract

gaba 皮质神经元是一种异构的细胞群体, 在调节兴奋性锥体神经元的输出以及同步锥体神经元集合的输出方面起着关键作用。interneuron 功能的缺陷已经牵连到各种神经精神疾病, 包括精神分裂症, 自闭症和癫痫。从胚胎干细胞衍生的皮质神经元不仅允许研究其发展和功能, 但提供了深入的分子机制的基础上, 皮层 interneuron 相关疾病的发病机理。神经元也有非凡的能力, 生存, 迁移, 并集成到宿主皮质电路后移植, 使他们成为理想的候选细胞的治疗方法。在这里, 我们提出了一个可伸缩, 高效, 改良的胚体的单层方法, 以 Nkx2.1 表达 interneuron 祖细胞和他们的后代从小鼠胚胎干细胞 (mESCs)。使用 Nkx2.1:: mCherry: Lhx6:: GFP 双报告制线、Nkx2.1 祖细胞或其 Lhx6-expressing 后有丝分裂后代, 可通过荧光活化单元分类 (资产管制系统) 隔离, 随后用于许多下游应用。我们还为发育 (PV) 或生长抑素 (SST) interneuron 亚群提供了丰富的方法, 这可能有助于研究命运的确定, 或用于治疗应用, 将受益于 interneuron 亚组丰富移植.

Introduction

在两个小鼠和人类中, 大约一半的皮质抑制神经元 (CIns) 起源于一个短暂的皮层下结构, 称为内侧节隆起 (MGE), 上皮祖和其他神经元和神经胶质子组表示转录因子 Nkx2.11,2。通过相交形态学、神经、电生理学和连通性特征3,4来定义这些子类型。MGE 衍生的 CIns 可以分为大多数非重叠子群的基础上, 其表达的 PV 或 SST, 其表达与特定的电生理和连接倾向5。神经元, 特别是 PV 亚群的功能障碍, 已牵连多神经精神疾病和疾病6,7。该方法的总目标是产生干细胞衍生的有丝分裂祖细胞和迁移前体, 丰富的 PV 或 SST 的命运, 研究皮质 interneuron 生物学和用于细胞基础治疗。

我们已经开发了一个可伸缩的, 高效的方法来推导 Nkx2.1 表达 interneuron 祖及其后代从 mESCs。使用 Nkx2.1:: mCherry: Lhx6:: GFP 双报告制线8, Nkx2.1 祖细胞或其 Lhx6-expressing 后有丝分裂后代可通过外地资产管制系统隔离, 随后用于若干下游应用。通过操纵一些信号通路、培养时间和神经再生模式, 我们可以获得数百万个荧光标记的 interneuron 前体, 适合于下游应用的宿主。

虽然存在一些其他方法来生成 MGE 样的祖 mESCs9,10,11,12,13,14, 我们的方法, 这依赖于 Wnt拮抗剂 XAV-939, 是特别有效的产生 Foxg1/Nkx2.1 co 表达 telencephalic 祖细胞。此外, 通过我们的双报告系统选择 interneuron 祖细胞或其后有丝分裂 Lhx6-expressing 后代的能力, 极大地提高了产生不同祖和后代的能力。

Protocol

注: 本协议中描述的双记者制线可根据要求提供 (sande@mail.med.upenn.edu sande@mail 大学)。 1. 媒体准备 注意: 在细胞培养使用前, 请将所有介质预热到37° c。 小鼠胚胎成纤维细胞 (MEF) 培养基 (准备500毫升) 添加50毫升胎牛血清 (FBS) 到449毫升 Dulbecco 氏改良鹰的培养基 (DMEM), 并通过500毫升0.22 µm 孔过滤器过滤器。 在过滤后加入1?…

Representative Results

本文所描述的协议是我们已发布协议的修改版本15,16,17 , 并已针对我们的 Nkx2.1 进行了优化:: mCherry: Lhx6:: GFP 双报告制线。通过添加 Wnt 抑制剂 XAV-939 从 DD0-5, 结合重新电镀在 DD8, 我们实现了鲁棒 Nkx2.1 诱导, 其中50% 以上的 DAPI + 核在文化中也 Nkx2.1 表达 (图 1A, B)。免疫组…

Discussion

虽然这种方法是非常有效的模式 J1-derived mESCs (SCRC-1010), 我们已经经历了可变的成功与其他制线和克隆分离株。例如, Foxg1::venus mESCs (EB3-derived;Danjo et al.13) 对此协议的响应很差, DD12 的 Foxg1 归纳通常按1-2% 的顺序进行。出于我们不完全理解的原因, 另一个 Nkx2.1:: mCherry: Lhx6:: GFP 双报告克隆 (称为 JQ59), 同时被隔离为该协议中描述的线 (称为 JQ27), 生长时产生少于 1% Nkx2.1 表达的细…

開示

The authors have nothing to disclose.

Acknowledgements

我们感谢 Nkx2.1 的发展:: mCherry: Lhx6: GFP 双重记者制线以及詹妮弗. 泰森、Maroof 和蒂姆. 彼得罗斯米为帮助开发这一协议而进行的早期工作。我们还感谢印章流式细胞仪的核心技术援助。这项工作得到了 NIH R01 MH066912 (SA) 和 F30 MH105045-02 (DT) 的支持。

Materials

Bottle-top vacuum filter system Corning CLS430769
Test Tube with Cell Strainer Snap Cap ThermoFisher Corning 352235
Mouse embryonic fibroblasts (CF-1 MEF IRR 7M) MTI-Globalstem GSC-6101G 1 vial of 7M MEFs is sufficient for four 10-cm TC plates. References: 29,35
FBS Atlanta Biologicals S11150H
Primocin Invivogen Ant-pm-2 Also known as antimicrobial agent. Do not filter with base media — add after filtration. References: 9,11,36,37
N2 supplement-B Stemcell Technologies 7156 Do not filter with base media — add after filtration
Glutamax (100x) ThermoFisher 35050061 Also known as L-alanine-L-glutamine. References: 9,11,38,39
KnockOut Serum Replacement (KSR) ThermoFisher 10828028 Also known as serum-free medium supplement. References: 9,11
L-glutamine (100x) ThermoFisher 25030081
MEM-NEAA (100x) ThermoFisher 11140050
2-Mercaptoethanol ThermoFisher 21985023
KnockOut DMEM ThermoFisher 10829018 Also known as non-glutamine containing DMEM. References: 9,11
Hyclone FBS VWR 82013-578 Also known as stem cell grade FBS. References: 9,11
Tissue culture treated dish (10cm) BD Falcon 353003
Non-adherent sterile petri dish (10cm) VWR 25384-342
Leukemia inhibitory factor (mLIF) Chemicon ESG1107 Do not freeze, store at 4'C. References: 9,11
DMEM/F12 ThermoFisher 11330032
0.1% Gelatin Solution ATCC ATCC PCS-999-027
Laminin Sigma L2020
Poly-L-lysine Sigma P6282
Trypsin-EDTA (0.05%) ThermoFisher 25300054
Accutase ThermoFisher A1110501 Also known as non-trypsin containing cell dissociation reagent. References: 9,11
RQ1 RNase-Free DNase Promega M610A
LDN-193189 Stemgent 04-0074 Resuspend in DMSO and store at -80'C in single use aliquots
XAV939 Stemgent 04-0046 Resuspend in DMSO and store at -80'C in single use aliquots
rhFGF-2 R&D Systems 233-FB Resuspend in PBS with 0.1% BSA and store at -80'C in single use aliquots
rhIGF-2 R&D Systems 291-G1 Resuspend in PBS with 0.1% BSA and store at -80'C in single use aliquots
ROCK inhibitor (Y-27632) Tocris 1254 Resuspend in DMSO and store at -80'C in single use aliquots
Smoothened agonist (SAG) Millipore 566660-1MG Resuspend in H20 and store at -80'C in single use aliquots
rm Sonic Hedgehog/SHH R&D Systems 464-SH-025 Resuspend in PBS with 0.1% BSA and store at -80'C in single use aliquots
PKCζ Pseudosubstrate Inhibitor, Myristoylated EMD Millipore 539624 Resuspend in H20 and store at -80'C in single use aliquots

参考文献

  1. Jones, E. G. The origins of cortical interneurons: mouse versus monkey and human. Cereb Cortex. 19, 1953-1956 (2009).
  2. Wonders, C. P., Anderson, S. A. The origin and specification of cortical interneurons. Nature reviews. Neuroscience. 7 (6), 687-696 (2006).
  3. Ascoli, G. A., et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature reviews. Neuroscience. 9, 557-568 (2008).
  4. DeFelipe, J., et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature reviews. Neuroscience. 14, 202-216 (2013).
  5. Xu, X., Roby, K. D., Callaway, E. M. Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J Comp Neurol. 518, 389-404 (2010).
  6. Inan, M., Petros, T. J., Anderson, S. A. Losing your inhibition: Linking cortical GABAergic interneurons to schizophrenia. Neurobiol Dis. 53, 36-48 (2013).
  7. Benes, F. M., Berretta, S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology. 25, 1-27 (2001).
  8. Tyson, J. A., Goldberg, E. M., Maroof, A. M., Petros, T. P., Anderson, S. A. Duration of culture and Sonic Hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells. Development. 142, 1267-1278 (2015).
  9. Au, E., et al. A modular gain-of-function approach to generate cortical interneuron subtypes from ES cells. Neuron. 80, 1145-1158 (2013).
  10. Petros, T. J., Maurer, C. W., Anderson, S. A. Enhanced derivation of mouse ESC-derived cortical interneurons by expression of Nkx2.1. Stem Cell Res. 11, 647-656 (2013).
  11. Cambray, S., et al. Activin induces cortical interneuron identity and differentiation in embryonic stem cell-derived telencephalic neural precursors. Nat Commun. 3, 841 (2012).
  12. Chen, Y. J., et al. Use of “MGE Enhancers” for Labeling and Selection of Embryonic Stem Cell-Derived Medial Ganglionic Eminence (MGE) Progenitors and Neurons. PloS one. 8, e61956 (2013).
  13. Danjo, T., et al. Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31, 1919-1933 (2011).
  14. Watanabe, K., et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci. 8, 288-296 (2005).
  15. Tyson, J. A., et al. Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells. Development. 142, 1267-1278 (2015).
  16. Maroof, A. M., et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell. 12, 559-572 (2013).
  17. Tischfield, D. J., Kim, J., Anderson, S. A. Atypical PKC and Notch Inhibition Differentially Modulate Cortical Interneuron Subclass Fate from Embryonic Stem Cells. Stem Cell Reports. 8, 1135-1143 (2017).
  18. Liodis, P., et al. Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27, 3078-3089 (2007).
  19. Du, T., Xu, Q., Ocbina, P. J., Anderson, S. A. NKX2.1 specifies cortical interneuron fate by activating Lhx6. Development. 135, 1559-1567 (2008).
  20. Marin, O., Anderson, S. A., Rubenstein, J. L. Origin and molecular specification of striatal interneurons. Journal of Neuroscience. 20, 6063-6076 (2000).
  21. Xu, Q., Wonders, C. P., Anderson, S. A. Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon. Development. 132, 4987-4998 (2005).
  22. Glickstein, S. B., Alexander, S., Ross, M. E. Differences in cyclin D2 and D1 protein expression distinguish forebrain progenitor subsets. Cereb Cortex. 17, 632-642 (2007).
  23. Petros, T. J., Bultje, R. S., Ross, M. E., Fishell, G., Anderson, S. A. Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate. Cell Rep. 13, 1090-1095 (2015).
  24. Xu, Q., Tam, M., Anderson, S. A. Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J Comp Neurol. 506, 16-29 (2008).
  25. Wonders, C. P., et al. A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence. Dev Biol. 314, 127-136 (2008).
  26. Inan, M., Welagen, J., Anderson, S. A. Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. Cereb Cortex. 22, 820-827 (2012).
  27. Flames, N., et al. Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. The Journal of neuroscience: the official journal of the Society for Neuroscience. 27, 9682-9695 (2007).
  28. Fogarty, M., et al. Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27, 10935-10946 (2007).
  29. Eiraku, M., et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 3, 519-532 (2008).
  30. Colasante, G., et al. Rapid Conversion of Fibroblasts into Functional Forebrain GABAergic Interneurons by Direct Genetic Reprogramming. Cell Stem Cell. 17, 719-734 (2015).
  31. Xu, Q., Cobos, I., De La Cruz, E., Rubenstein, J. L., Anderson, S. A. Origins of cortical interneuron subtypes. The Journal of neuroscience: the official journal of the Society for Neuroscience. 24, 2612-2622 (2004).
  32. Southwell, D. G., et al. Interneurons from embryonic development to cell-based therapy. Science. 344, 1240622 (2014).
  33. Tyson, J. A., Anderson, S. A. GABAergic interneuron transplants to study development and treat disease. Trends Neurosci. 37, 169-177 (2014).
  34. Donegan, J. J., et al. Stem cell-derived interneuron transplants as a treatment for schizophrenia: preclinical validation in a rodent model. Mol Psychiatry. , (2016).
  35. Deglincerti, A., et al. Self-organization of human embryonic stem cells on micropatterns. Nat Protoc. 11, 2223-2232 (2016).
  36. Chambers, S. M., et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 27, 275-280 (2009).
  37. Wang, J., et al. Isolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression. Nat Protoc. 11, 327-346 (2016).
  38. Zeltner, N., et al. Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med. 22, 1421-1427 (2016).
  39. Blahos, J., et al. A novel site on the Galpha -protein that recognizes heptahelical receptors. J Biol Chem. 276, 3262-3269 (2001).

Play Video

記事を引用
Tischfield, D. J., Anderson, S. A. Differentiation of Mouse Embryonic Stem Cells into Cortical Interneuron Precursors. J. Vis. Exp. (130), e56358, doi:10.3791/56358 (2017).

View Video