Sustained attention, or continuously monitoring situations for intermittent and unpredictable events, is a critical aspect of cognition. Here we detail how to test sustained attention in rats using touchscreen operant chambers. We demonstrate comparable performance in male and female rats, making this task useful for studying attention in both sexes.
Sustained attention is the ability to monitor intermittent and unpredictable events over a prolonged period of time. This attentional process subserves other aspects of cognition and is disrupted in certain neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Thus, it is clinically important to identify mechanisms that impair and improve sustained attention. Such mechanisms are often first discovered using rodent models. Therefore, several behavior procedures for testing aspects of sustained attention have been developed for rodents. One, first described by McGaughy and Sarter (1995), called the sustained attention task (SAT), trains rats to distinguish between signal (i.e., brief light presentation) and non-signal trials. The signals are short and thus require careful attention to be perceived. Attentional demands can be increased further by introducing a distractor (e.g., flashing houselight). We have modified this task for touchscreen operant chambers, which are configured with a touchscreen on one wall that can present stimuli and record responses. Here we detail our protocol for SAT in touchscreen chambers. Additionally, we present standard measures of performance in male and female Sprague-Dawley rats. Comparable performance on this task in both sexes highlights its use for attention studies, especially as more researchers are including female rodents in their experimental design. Moreover, the easy implementation of SAT for the increasingly popular touchscreen chambers increases its utility.
Disorders ranging from attention deficit hyperactivity disorder (ADHD) to schizophrenia to Alzheimer's disease, share attentional impairments as a feature1,2,3. Deficits in sustained attention—the ability to monitor continuously a situation for intermittent and unpredictable events—are particularly disruptive, because sustained attention is crucial for selective and divided attention, as well as other cognitive processes4,5. Even in healthy people, difficulty with sustaining attention negatively affects cognition, impairing daily function6. Thus, understanding the neurobiological basis of sustained attention and how it becomes dysregulated could lead to interventions to improve cognition that would benefit many people.
In order to delineate circuits and molecular processes that contribute to proper versus disrupted attention, many researchers have turned to non-human animal models, where the manipulation of specific cell populations and molecular processes during attention tasks is possible. The effort has led to the development of a variety of operant attention tasks that can assess the ability to sustain attention7,8,9,10. One such paradigm, developed by McGaughy and Sarter (1995), is known as the sustained attention task (SAT). Rodents trained in SAT must distinguish signal trials, in which a signal light briefly flashes, from non-signal trials. Attentional demands can be increased by introducing a visual distractor (flashing houselight)10. The parameters critical for assessing attention in SAT are well documented and this task has been validated in male and female rats and mice10,11,12. A version has even been adapted for humans, highlighting the translational utility of SAT13. Importantly, the use of this task helped implicate the basal forebrain corticopetal system in sustained attention4. Specifically, cholinergic neurons in the nucleus basalis of Meynert (NBM)/ substantia inominata (SI) region of the basal forebrain that project to the prefrontal cortex are critical for hits, which are accurate responses on signal trials14,15. In contrast, GABAergic neurons in this region are thought to mediate performance during correct rejections (CRs), which are accurate responses on non-signal trials16. Once the basic circuit for this task was established, factors that modulate this circuit to impair attention ranging from stress hormones to neurotoxic proteins have been identified17,18. Collectively, these studies highlight the utility of SAT.
One limitation to implementing SAT in the laboratory is that the original procedure requires operant chambers permanently configured for the task, with a center panel light and two extendable levers, one designated for hits and one for CRs10. On a signal trial, the panel light briefly illuminates and then levers extend to indicate a 4 s response window. During that window, if the designated hit lever is pressed, then the rat receives a reward (either food or water). Incorrect lever presses on signal trials, known as misses, are not rewarded. On non-signaled trials, the panel light remains off, then levers are extended. While a CR is rewarded, incorrect lever presses on non-signaled trials, known as false alarms, are not rewarded. A failure to make any response during the response window counts as an omission. To expand the availability of SAT, we recently modified the task for touchscreen operant chambers, in which one wall is a touchscreen that can both display visual stimuli and record nose-poke responses19. Touchscreen chambers are becoming popular because of their versatility to run a variety of tasks (e.g., paired associate learning, reversal learning, etc.) with one piece of equipment20. Similar to other touchscreen procedures20,21,22, our adaptation of SAT requires the use of an opaque plastic touchscreen cover, called a mask, with holes cut into it. A central, circular hole allows for the presentation of a signal by presenting a white stimulus on the screen behind it, and two square response areas, one designated for hits and one for CRs, allow the rat to make touch responses19. In the traditional chambers, the 4-s response window is typically indicated with the presentation of the levers, but a previous study demonstrated that a tone can also be used to signal the response window23. In touchscreen SAT, we similarly signal the response window with a brief tone. Other training parameters (e.g., number of trials, intertrial interval, etc.) are kept similar between traditional and touchscreen SAT. We previously assessed performance between the traditional and touchscreen SAT versions and found that it was comparable, suggesting that touchscreen SAT is a valid way to measure sustained attention19. The touchscreen modification makes SAT more versatile because it can now be adapted for widespread use in touchscreen operant boxes.
The present protocol details how to run touchscreen SAT in the laboratory. The training schedules have been slightly altered from our previous report of the task19 to optimize acquisition time in female rats, which, unlike males, had difficulty advancing through the previous schedules24. Results illustrating typical performance in male and female rats are included, along with tips for troubleshooting issues with the task.
All experiments were conducted in accordance with the National Institutes of Health guidelines and were approved by the Temple University Institutional Animal Use and Care Committee. This protocol was developed with adult (~60 days of age when starting the study) male and female Sprague-Dawley rats (Charles River).
1. Materials for Touchscreen SAT
2. Schedule Design for Touchscreen SAT
NOTE: The below protocol details how to set the parameters for the shaping and testing schedules for touchscreen SAT. All these schedules are also available upon request. Table 1 depicts the schedule parameters.
Training Stage | Max. Trials | Signal Duration (ms) | Special Conditions | 基準 | Median Days per Stage |
Nose Poke Shape | 120 | No events | Houselight on | 120 trials in 40 minutes | Males: 2, Females: 2 |
Training Schedule 1 | 162 | 500 | Houselight on; Correction trials; Response window lit at 50% during signal trials | > 70% Hits, > 70% CR, < 20% Omissions for 3 consecutive days | Males: 19, Females: 25 |
Training Schedule 2 | 162 | 500 | Houselight on | > 70% Hits, > 70% CR, < 20% Omissions for 3 consecutive days | Males: 13, Females: 21 |
SAT | 162 | 500, 50, 25 | Houselight on | > 70% Hits at 500 ms, > 70% CR, < 20% Omissions for 3 consecutive days | Males: 18, Females: 12 |
Table 1: Training Schedules and Average Acquisition Time for Each Schedule.
3. Procedure for Running Rats in Touchscreen SAT
4. Troubleshooting the Behavior
NOTE: It is normal for performance to drop when rats are transitioned to the next shaping phase (i.e., Nose Poke Shape to Training Schedule 1, Training Schedule 1 to Training Schedule 2, Training Schedule 2 to SAT). However, if performance does not improve over time or if a rat was performing well and then suddenly stops performing well, most often the issue is with food restriction.
For most attention studies, rats are trained to criteria on SAT and then manipulations to disrupt or improve attention are performed. Acquisition data is not typically presented, but we do so here to illustrate rates of acquisition in male and female Sprague-Dawley rats. To this end, we quantified the median number of days to reach criteria on SAT (starting on the Nose Poke Phase). Note that a few rats never made it to criteria (n = 5 males, and n = 1 female). The median days that it took male (n = 24) and female (n = 16) rats to reach criteria (including those who did not reach criteria in the allotted time) was 54.5 days and 62 days, respectively (Figure 1). There was no significant difference in acquisition time between the sexes [U = 165.5, Z = -0.75, p = .469]. It is notable that the variability in acquisition time appears greater in males [interquartile range (IQR) = 60.25] than females [IQR = 29.50].
Once rats acquired baseline, we evaluated the four typical performance measures in males (n = 19) and females (n = 15): percent hits, percent CRs, VI, and percent omissions. Based on the percentages of hits and correct rejections, males and females were similarly accurate on signaled [t(32) = .929, p = .360] and non-signaled trials [t(32) = .071, p = .394] (Figure 2a,b). As is typical with SAT, accuracy on non-signaled trials was better than accuracy on signaled trials [F(1, 32) = 129.99, p < .001], but this was not different between the sexes (i.e., no main effect of sex or interaction, [F's <1]). As noted, VI is calculated as an overall measure of attentional performance, and males and females had similar VIs [t(32) = .419, p = .678] (Figure 2c). Omissions were low, as expected with an optimal food restriction procedure, and comparable between the sexes [t(32) = 1.61, p = .118] (Figure 2d). To test performance across the session, we assessed changes across the three trial blocks and found no differences in hits [F(2, 64) = 2.75, p = .071] and correct rejections [F(2, 64) = 1.871, p = .162]. When comparing performance across trial blocks, there were no sex differences for hits and correct rejections [F's <1] or interactions between sex and trial block for hits [F(2, 64) = 1.427, p =.247] and correct rejections [F <1] (data not shown).
During SAT, the signals vary between 500 ms, 50 ms, and 25 ms and performance typically declines with the shorter signal durations10,17,18. We replicate that finding here, as accuracy declined with signal duration [F(2, 64) = 90.21, p < .001] (Figure 3a). Bonferroni post-hoc tests revealed a significant decline in percent hits from 500 ms to 50 ms (p < .001) and again from 50 ms to 25 ms (p = .017). Performance was comparable between males and females: there was no main effect of sex [F(1, 32) = 1.74, p = .267] or sex by signal duration interaction [F(2, 64) = 1.66, p = .198].
One way to increase attentional demands is by flashing the houselight during the second block of trials. We tested a subset of rats with this distractor (male n = 14, female n = 13). As expected, there was a main effect of session [F(2, 50) = 37.73, p < .001], such that performance declined during the second block of trials (post-hoc, block 1 vs. 2, p < .001), but recovered once the distractor ceased in block 3 (post-hoc, block 1 vs. 3, p = .862) (Figure 3b). There was a main effect of sex [F(1, 25) = 11.29, p = .003], such that females performed worse than males throughout the distractor session. Although there was no interaction between sex and performance for the trial blocks [F(2, 50) = .582, p < .563], planned comparisons between males and females at each trial block revealed that although males and females performed similarly in Block 1 (p = .144), females performed worse in Block 2 (p = .046) and Block 3 (p = .003), suggesting that the distractor is more disruptive in females and their recovery is worse.
Figure 1: Days to Criteria. The median number of days to reach criteria on the sustained attention task (SAT) was similar between males and females. However, male acquisition times are more variable, as they have a larger interquartile range (IQR) than females. Please click here to view a larger version of this figure.
Figure 2: SAT Performance Measures. (A, B) Male and female rats have similar accuracy on signal trials, as indicated with percent hits, and non-signal trials, as indicated with percent correct rejections (CRs). (C) The vigilance index (VI), an overall measure of attention, was also similar in both sexes. (D) Omissions were low and comparable between males and females. Data are presented as means ± standard error of the mean (SEM). Please click here to view a larger version of this figure.
Figure 3: SAT Performance Across Signal Durations and in the Presence of a Visual Distractor. (A) Signals during SAT vary in duration. As expected, percent hits (i.e., accuracy on signal trials) declines as signal durations get shorter and this effect was similar in both sexes. Asterisk indicates a significant difference from the 500 ms signal duration. (B) Performance on the Distractor SAT session is typically measured with the VI. As expected, the introduction of a distractor (i.e., flashing houselight) in Block 2 (illustrated with a black bar) decreased the VI in both males and females. Females had a lower VI throughout the session than males. Asterisk indicates a significant difference from Block 1 and Block 3 (p <0.05). Data are presented as means ± SEM. Please click here to view a larger version of this figure.
Deficits in sustained attention are reported in neuropsychiatric, neurodevelopmental, and neurodegenerative disorders1,2,3, but the processes that contribute to optimal versus disrupted attention are understudied. This is, in part, because specialized equipment limits the easy adaptation of rodent attention tasks. However, touchscreen chambers are addressing this issue by providing the flexibility to run a variety of cognitive tasks with one piece of equipment20,22. Here we add to the growing list of cognitive tasks available for touchscreens20,22 by detailing how to implement touchscreen SAT for male and female Sprague-Dawley rats. A comparison of performance between the sexes revealed comparable acquisition rates. However, males were more variable in reaching criteria than females. This interesting sex difference could be related to the high trait variability of males, but not females, of the Sprague-Dawley rat strain6 and certainly warrants further investigation. After achieving baseline criteria, males and females had comparable accuracy on signal and non-signal trials, which was reflected in the VI scores. Performance on signal and non-signal trials remained similar across all three trial blocks in both sexes, which is consistent with most reports of steady performance across the session on the traditional SAT version when young adult rats without lesions are assessed26,27,28,29,30, but see10,11. Omissions were similarly low in both sexes, indicating that both males and females were motivated to perform the task. Note that in our laboratory, we maintain our rats on a reverse light/dark cycle (lights off at 8:30 AM). However, the traditional SAT procedure has been conducted with rats maintained on a regular light/dark cycle with testing during the light period (e.g.,10,17). Cognitive performance in SAT comes to serve as a zeitgeber likely minimizing the impact that the time of day has on testing31.
A feature of SAT is the use of different signal durations. There is evidence that the introduction of multiple signals taxes attentional demands and engages the cholinergic system because it introduces expected uncertainty32,33. Additionally, varying signal durations allows for the comparisons between brief signals, which are difficult to detect, and longer signals. As expected, the present results demonstrate that performance declined in both sexes as signal durations decreased. It is likely that most investigators will use SAT to test factors that increase or decrease attention. Comparing performance at different signal durations can be useful in these situations. For example, an effect of a putative cognitive enhancing compound may be more pronounced at the shorter signal durations and thus viewing the drug's effect at specific signal durations may provide a more complete picture of efficacy.
An approach to increasing attentional demands is to introduce a distracting stimulus by flashing the houselight in a version of the task known as Distractor SAT. Here we found that presenting this distractor during Block 2 impaired performance compared to baseline (i.e., Block 1 with no distractor) in both sexes. As expected, performance recovered once the distracting stimulus was terminated in Block 3. Although there was not a significant interaction between sex and trial block, performance at baseline was more similar between males and females than in Blocks 2 and 3, where females performed worse than males, suggesting that the effect of the distractor may be more pronounced in females. However, the fact that the distractor effectively impaired attention in males and females indicates that Distractor SAT can be utilized to increase attentional demands in both sexes. Here we employed the typical distractor manipulation of flashing the houselight, but with touchscreen chambers there could be other ways to introduce a distracting stimulus. For example, a touchscreen continuous performance task for rodents introduces visual cues on the touchscreen that are adjacent to the target stimulus to increase attentional demands8. A similar manipulation is possible with SAT, although we have not tested it yet.
One disadvantage of this task is that it takes a long time for rats to reach baseline criteria. However, this duration of training is a characteristic of many attention tasks7,34,35, so SAT is not an exception. To facilitate training, careful attention to performance throughout the shaping and training phases is crucial, so that interventions can be made to address performance issues in a timely fashion. In our experience, a sudden drop in performance is most often attributable to an issue with food restriction. When a food restriction issue is suspected, it is critical to assess omissions, watch the rat's performance during the task, and review daily weight records to determine how to adjust feeding. Although rarer, a side bias can also develop. This issue is easily remedied, however, by dropping back the rat to Training Schedule 1, which requires forced correction trials. Other important factors to consider are training rats at the same time each day and ensuring that they are run on the proper schedule. Adhering to these tips optimizes this behavioral procedure.
In the current study, we tested attention in the Sprague-Dawley rat strain. This strain was chosen based on our previous work investigating behavior in male and female Sprague-Dawley rats18,19,36,37. Other strains, including Fischer/Brown Norway hybrid rats, Wistar, and Long-Evans rats, have been tested with the original version of SAT 10,32,38. Thus, it is likely that the procedure described here can be utilized with a variety of rat strains. In fact, given that pigmented strains, as compared to the albino Sprague-Dawley rat strain, have better visual acuity 39, it is possible that pigmented strains would acquire SAT faster (but see reference21). Moving beyond rats, a mouse version of SAT was developed for use in traditional operant chambers40. Touchscreen versions of other attention tasks (e.g., the five choice serial reaction time task and continuous performance) are used with mice8,41, so it is likely that the parameters detailed here can be adapted to test mice in a version of touchscreen SAT.
In summary, the present protocol details how to implement SAT for touchscreen operant chambers in rats. Given the increasing popularity of this equipment, touchscreen SAT can be easily employed in many laboratories with this protocol. Another important aspect of our study design is that we compared SAT performance between the sexes. While both sexes have been assessed using traditional SAT10,11, many touchscreen tasks of attention were developed utilizing only male rodents or did not compare the performance of males and females8,19,41. We found that touchscreen SAT acquisition and criteria performance were similar in males and females, suggesting that, much like with traditional SAT, touchscreen SAT is an equally valid test of attention in both sexes. The importance of validating behavioral procedures in both male and female rodents is becoming increasingly critical because of recent efforts implemented by the National Institutes of Health to require the consideration of sex as a biological variable; a policy meant to address the historic male bias in basic research42. The present findings indicate that there is no reason to exclude female rats in a study designed for touchscreen SAT. Moreover, because touchscreen SAT performance is similar in males and females at baseline, any manipulation aimed at improving or impairing attention that results in a sex difference is not complicated by sex differences in baseline performance measures. Thus, the increasing adoption of touchscreen chambers and the move to include female rodents in basic research studies make touchscreen SAT a particularly useful approach studying sustaining attention.
The authors have nothing to disclose.
We would like to thank Joy Bergmann, Attilio Ceretti, Sarah Cohen, Nina Duncan, Arron Hall, Hanna Lefebo, and Madeleine Salvatore for their assistance with the behavior, and Dr. Vinay Parikh, Dr. Brittney Yegla, and Rob Cole for their advice on the SAT parameters. We would like to thank Dr. Jill McGaughy for tips on the training procedure. This work was supported by the National Institutes of Health grant NIMH 092438 and National Science Foundation grant IOS 1552416 to D.A.B.
Bussey-Saksida Rat Touch Screen Chambers Easy-Install System | Lafayette Instrument | 80604-20 | Includes: Touch Screen, Chamber base with perforated floors, Large Feeder Reward Area (44.5mm wide x 92.5mm high), Speaker, Houselight, Tone Generator, SAC; Trapezoidal animal working area is 126mm wide at the Feeder, 240mm wide and 332 mm deep at the Screen, and 300 mm in height |
Sound Attenuation Cubicles (SAC) | Lafayette Instrument | 80604-20 | Attenuation to approximately 35dB; 38kg in weight; External dimensions: 600mm wide x 670mm tall x 352mm deep; Internal dimensions: 540mm wide x 610mm tall x 532mm deep |
Abet II Software for Touch Screens | Lafayette Instrument | 89505 | Version 2.19 |
Whisker Multimedia | Lafayette Instrument | 80698-1 | Required for Abet II Touch Operation |
Pellet Dispenser | Lafayette Instrument | 80209-45 | 45mg Interchangeable Pellet Size Wheel |
Camera | Lafayette Instrument | 80600-CAM | Filtered and focused for IR light |
Microsoft Windows | Microsoft | Windows 7-64 bit recommended | |
Controller PC-Touch Screen Chambers | Lafayette Instrument | 88530 | Dual Core Pentinum Processor; 2.5 GHz or greater; keyboard, mouse, and monitor; Installed PCI card, cable and expansion; Four RS232 ports; Four VGA ports |
Dustless Precision Pellets | BioServe | F0165 | 45 mg |
Black Acrylic Mask | Everything Plastic | Custom Product | Black polycarbonate with one matte finish side, 3.18 mm thick; Central circular opening, 28.58 mm diameter, 107.95 mm from the bottom, centered between the left and right side; Two square response areas, 28.57 mm x 28.57mm each positioned below and off center, one 85.725 mm from the left and one 85.725 mm from right side, and both 34.925 mm from the bottom. |
Utility Cart | Fisher Scientific | 11-954-754 | 30.75 in. x 18.38 in x 33 in |
Black towel | Large enough to cover cages for animal transport | ||
Headlights with red lights | Energizer | HDL33A2E | LED white and red light |