المغذيات الموجودة في شكل جسيمات يمكن أن تسهم كثيرا تحميل الشاملة في مياه الصرف الزراعي. تصف هذه الدراسة طريقة جديدة التقاط المرجحة تدفق الماء والجسيمات العالقة من المزرعة قناة تصريف المياه عبر طوال فترة الحدث الصرف.
والغرض من هذه الدراسة وصف الطرق المستخدمة لالتقاط المرجحة تدفق المياه والجسيمات العالقة من القنوات المزرعة أثناء تصريف تصريف الأحداث. يمكن إثراء القنوات المزرعة بالمغذيات مثل الفوسفور (P) التي عرضه للنقل. الفوسفور في شكل جسيمات معلقة يمكن أن يسهم إسهاما كبيرا في الأحمال ف عموما في مياه الصرف. وأجريت تجربة خزان الترسيب لالتقاط الجسيمات العالقة خلال أحداث الصرف المنفصلة. وجمعت المزرعة قناة تصريف المياه في سلسلة من دبابتين تسوية 200 لتر على مدى طوال فترة الحدث الصرف، حيث تمثل عينة فرعية مركب من المياه التي يجري تصريفها. وتستخدم الأقماع تسوية Imhoff في نهاية المطاف تسوية خارج الجسيمات العالقة. ويتحقق ذلك بالمياه السحارة من الدبابات تسوية عن طريق المخاريط. ثم يتم تجميع الجسيمات للتحاليل الفيزيائية والكيميائية.
مصير والنقل للجسيمات العالقة كانت موضوع دراسات عديدة بسبب دورها في اتخام المياه بالمغذيات، خاصة في النظم الزراعية1،2. إجراء تقييم شامل للعناصر الغذائية الموجودة في الجسيمات داخل نظام المائية ضروري للتحقيق في العديد من القضايا البيئية، مثل ركوب الدراجات الداخلية للمواد الغذائية وإطلاق سراح السطحية عمود المياه3، الركيزة الاستقرار وتوافر الضوء داخل عمود الماء، والشواغل المتعلقة بجودة المياه للنظم الإيكولوجية المصب4في نهاية المطاف. كمية الفوسفور (P) المخزنة في شكل جسيمات (المواد العضوية أو الرواسب) عادة أكبر من أي وقت في عمود المياه5. دراسة أجرتها كيني وآخرون. 6 تبين أن الرواسب الأخيرة التي أودعت في بحيرة لوتشلوسا، فلوريدا بين العمرية 1900 و 2006. هذه الرواسب الأصغر الواردة ف حوالي 55 مرة أكثر من تلك التي كانت موجودة في عمود الماء. يتمثل أحد النهج لتوصيف الأثر المحتمل الذي قد الجسيمات على نظام معين إجراء جرد كمية الفوسفور المخزنة في الرواسب خرجوا خلال أحداث الصرف. جمع وتحليل هذه الجسيمات خرجوا يمكن أن تساعد في تقدير الآثار المصب المغذيات في النظم الإيكولوجية الحساسة.
الأحداث العاصفة عادة تمثل نسبة ضئيلة من الوقت، ولكن يمكن أن تسهم في غالبية ف تحميل التفريغ في الصرف الزراعي. هذا سبب بغية منع الفيضانات الحقول، استنزاف كمية كبيرة من المياه على مدى فترات قصيرة من الوقت. معدلات كثافة وتدفق مياه الأمطار حيوية القيادة من العوامل التي يمكن التحكم بتركيز الرواسب العالقة في الجريان السطحي البري7. تصميم أساليب الرصد الذي يلتقط العينات المرجح تدفق المياه المركبة سيساعد على تجنب الأخطاء المرتبطة بالأحداث المعقدة، وارتفاع كثافة الأمطار. خلال أحداث التفريغ العالي مثل العواصف، قد لا تكون تغييرات سريعة وجذرية في تركيزات الممثل لتركيز الملوثات متوسط لوحدة التخزين الإضافية. ولذلك يمثل عينات المرجحة تدفق المياه أكثر دقة تركيز حدث التفريغ كما مجموع الأحمال على مدى فترة من الزمن8. العينات المرجح التدفق الأكثر شيوعاً عينات منفصلة أو المركبة التي يتم جمعها تلقائياً. بواسطة التقاط الجسيمات المعلقة المصدرة من المزرعة الصرف أثناء التفريغ يسمح لنا بقياس شدة الحدث على تحميل ف. الأسلوب الموصوفة في هذه الدراسة يساعد على التقاط الجسيمات التي يمكن بعد ذلك وصف للخصائص الفيزيائية والكيميائية المختلفة. الجدة من أخذ العينات تصريف الصرف باستخدام أسلوب استمرار تدفق مركب مقابل الاستيلاء على أخذ العينات أنه تمثيل أفضل للظروف الميدانية خلال كامل مدة الحدث الصرف. في حين، الاستيلاء على أخذ العينات هو “لقطة” في الوقت المناسب، ولا يجوز تماما تمثل أثر الحدث برمته.
ايفرجليدز الزراعية منطقة (EAA) في جنوب فلوريدا، الولايات المتحدة الأمريكية هو رقعة كبيرة من ايفرجليدز الأصلي الذي كان channelized واستنزاف للزراعة، والتنمية التجارية والسكنية. تقريبا تبرأ 1100 مليون م3 من المياه سنوياً من ومن خلال قانون إدارة الصادرات إلى جنوب و جنوب شرق9. التربة في EAA هي هيستوسولس التي عادة تحتوي على أكثر من 85 في المائة من العضوية يهم بالوزن ويكون أقل من 35% محتوى المعدنية10. قناة الرواسب وعادة ما يكون منخفض الكثافة (بين 0.14 ز سم-3 ل سم ز 0.35-3)، محتوى المواد العضوية عالية (بين 31-35 في المائة) وقيم ف الكلي (TP) تتراوح ما بين 726 ملغ-1,089 كجم-1 11.
غرض هذه التظاهرة، تم اختيار مزرعة داخل قانون إدارة الصادرات. هيدروسكابي لكيفية تدفق المياه داخل قانون إدارة الصادرات يعتمد على مضخات والجاذبية. ويتألف كل مزرعة في EAA قناة رئيسية واحدة على الأقل، وخنادق ميدانية متعددة. خنادق الميدان تشغيل خط عمودي إلى القناة الرئيسية. المضخات عادة تخدم غرضاً مزدوجاً؛ وهي تسليم مياه الري للمزرعة وأيضا تصريف مياه الصرف بعيداً عن الموقع. عند الميادين تحتاج إلى أن ينضب، هو خفض المياه في القناة الرئيسية، وتستنزف المياه من الحقل في الخنادق، مدفوعا بتدرج هيدروليكي. سبب منحدر طفيفة فقط في معظم السطحي من الأمطار التي تحدث على تدفقات الحقول عن طريق التشكيل الجانبي للتربة في العبور إلى الميدان خنادق. أثناء الري، وهو عكس النظام. هناك لا شبكة للصرف بلاط في EAA. المياه الجوفية هي الحفاظ على ارتفاع معين بسبب حصر طبقة من الحجر الجيري صخر الأديم أونديرلينج التربة. يوجه المياه عن طريق الترع الرئيسية؛ يتم ملء حقل الخنادق، ومسموح للمياه أن تتسرب إلى التشكيل الجانبي التربة رفع مستويات المياه الجوفية في الحقول. الطلب على مياه الري في قانون إدارة الصادرات تحدث عادة، خلال آذار/مارس، نيسان/أبريل، وأيار/مايو (الموسم الجاف)، مع تصريف الصرف الصحي سوى القليل جداً. وفي المقابل، حجم المياه التي يجري تصريفها بين حزيران/يونيه وتشرين الأول/أكتوبر (موسم الأمطار) أعلى بكثير. وجود قناة البنك سواتر وخنادق تسمح للحد الأدنى الجريان السطحي للمياه كما القنوات مصدرا محتملاً للتحميل ف إلى المزرعة12.
في هذه التجربة البصرية، نقدم طريقة جديدة للالتقاط مرجح تدفق الجسيمات العالقة خلال أحداث الصرف التي يمكن استخدامها في وقت لاحق لتحديد الخصائص الفيزيائية-الكيميائية مثل الكثافة، محتوى المادة العضوية، وتجزئة ف13 ،14.
أوتوسامبليرس لمياه الصرف جمع الجسيمات كانت وضعت بالقرب من الخروج مضخة محطة داتالوجيرس. تم توفير الطاقة قبل 12 الخامس البطاريات التي يتوجب بالألواح الشمسية. كانت تسيطر أوتوسامبليرس داتالوجيرس في الموقع، التي تحولت أوتوسامبليرس عندما ركض المضخات الخروج، وإيقاف عند توقف ضخ. فتحات لخطوط كمي…
The authors have nothing to disclose.
نود أن نشكر بابلو الحيوية وجوني موزلي للمساعدة في مجال أخذ العينات، ونادال فيفيانا وايرينا أوجنيفيتش للحصول على مساعدة مع التحليلات المختبرية.
Datalogger | Campbell Scientific | model CR1000 | |
Auto-sampler | ISCO | model 3700 | |
Pressure transducer | KPSI | model 700 | |
Tipping bucket rain guage | Texas Electronics | model TR-525 | |
Potassium Chloride | Fisher | 7447-40-7 | |
Sodium Hydroxide | Fisher | 1310-73-2 | |
Hydrochloric Acid | Fisher | 7647-01-0 | |
Sulfuric Acid | Fisher | 7664-93-9 | |
Potassium Persulfate | Fisher | 7727-21-1 | |
Ammonium Molybdate Tetrahydrate | Fisher | 12054-85-2 | |
L-Ascorbic Acid | Fisher | 50-81-7 | |
100 mg/L Anhydrous Phosphate Standard | ERA | 061 | |
Antimony Potassium Tartrate Trihydrate | Fisher | 28300-74-5 | |
Durapore Membrane Filters | Millipore | HVLP04700 | |
Whatman #41 Filter Paper | Whatman | 1441-150 | |
Fixed Speed Reciprocal Shaker E6010 | Eberbach Corporation | E6010.00 | |
Disposable Culture Tubes | Fisher | 14-961-29 | |
Allegra 25R Centrifuge | Becker Coulter | U.S. 605168-AC | |
Parafilm | Bemis Company Inc PM 999 | 13-374-12 | |
Oak Ridge Centrifuge Tubes | Nalgene | 3119-0050 | |
Fisherbrand 20mL HDPE Scintillation Vials with Urea Cap | Fisher | 03-337-23C | |
Fisherbrand Natural Polypropylene Jars with White Polypropylene Unlined Cap | Fisher | 02-912-024A | |
0.45 membrane filters | Cole-Parmer | Item # UX-15945-25 | |
100 ml digestion tubes | Fisher | TC1000-0735 | |
Glass funnels | Fisher | 03-865 | |
Spectronic 20 Genesys | Thermo-Fisher | 4001-000 | |
QuikChem | Latchat | 8500 |