A series of basic methods to enable the study of the reproductive ecology of fish kept in aquaria are described. These are useful protocols for collecting fish using SCUBA, transporting live fish, and observing the reproductive behavior of wild-caught fish kept in aquaria.
Captive-rearing observations are valuable for revealing aspects of fish behavior and ecology when continuous field investigations are impossible. Here, a series of basic techniques are described to enable observations of the reproductive behavior of a wild-caught gobiid fish, as a model, kept in an aquarium. The method focuses on three steps: collection, transport, and observations of reproductive ecology of a substrate spawner. Essential aspects of live fish collection and transport are (1) preventing injury to the fish, and (2) careful acclimation to the aquarium. Preventing harm through injuries such as scratches or a sudden change of water pressure is imperative when collecting live fish, as any physical damage is likely to negatively affect the survival and later behavior of the fish. Careful acclimation to aquaria decreases the incidence death and mitigates the shock of transport. Observations during captive rearing include (1) the identification of individual fish and (2) monitoring spawned eggs without negative effects to the fish or eggs, thereby enabling detailed investigation of the study species’ reproductive ecology. The subcutaneous injection of a visible implant elastomer (VIE) tag is a precise method for the subsequent identification of individual fish, and it can be used with a wide size range of fish, with minimal influence on their survival and behavior. If the study species is a substrate spawner that deposits adhesive eggs, an artificial nest site constructed from polyvinyl chloride (PVC) pipe with the addition of a removable waterproof sheet will facilitate counting and monitoring the eggs, lessening the investigator’s influence on the nest-holding and egg-guarding behavior of the fish. Although this basic method entails techniques that are seldom mentioned in detail in research articles, they are fundamental for undertaking experiments that require the captive rearing of a wild fish.
Spectacular adaptive evolution is evident in the morphology, ecology and behavior of fishes1. Especially, ecological features relating to reproduction are especially diverse, and most of these can be directly influenced by individual fitness2. To gain insight into selective pressures that have led to the evolution of unique features in different fish species, direct observation of reproductive and social behaviors using live fish is often beneficial to substantiate theoretical hypotheses.
However, continuous field observations of fish may require specialized underwater equipment and facilities that are difficult to maintain. In these cases, observations of wild-caught aquarium-reared fish can be helpful3,4,5. In addition, efficient observations of fish behaviors that are otherwise rare or difficult to observe under natural conditions can become possible by manipulating experiments in aquaria6,7,8. Rearing fish under good conditions by minimizing artificial stress and physical damage is critical for accurate ecological investigations.
The pygmy goby Trimma marinae reaches 23-25 mm total length and is distributed in the western Pacific Ocean, where it is found in quiet, sheltered bays, at depths of 9-26 m9. In this work, T. marinae is used as a model to describe a series of basic techniques for the collection of fish using the self-contained underwater breathing apparatus (SCUBA), fish transport, and eventual acclimation of the fish to aquaria for direct observation of the study species' reproductive behavior and ecology.
1. Collecting and Transporting Live Fish
NOTE: This protocol describes how to collect fish that possess a gas bladder, from a depth of ≥15 m to the surface. Rapid conveyance to the surface will induce expansion of the gas bladder by a change of pressure, which can seriously harm or kill the fish. Caution is warranted, as damage caused to the fish during this first step will negatively effect their survival and later behavior.
2. Acclimating the Fish to an Aquarium
3. Injecting a Visible Implant Elastomer (VIE) Tag to Identify Individual Fish
NOTE: In this work, individual fish are identified using VIE tags; for examples, refer to Frederick10, Olsen and Vøllestad11, and Leblanc and Noakes12. Also, if the study species is large enough to hold in a hand, the surgical table used in step 3.2 will not be necessary.
4. Counting the Demersal Adhesive Eggs
Following the above methods, 41, 15 and 96 individuals of T. marinae were collected in April 2014, 2015 and 2016, respectively, offshore of Amami Oshima, Kagoshima Prefecture, Japan (Table 1). In each case, 25 (61%), 14 (93%) and 91 (95%) individuals lived until depositing eggs in an aquarium. As reported in Fukuda et al.3, only one fish died before the end of the observation period in 2014, and fish spawning otherwise appeared to commence 7 days after captured, showing that the individuals were being reared under good conditions.
The VIE tags were visible and allowed identification of the individuals, even in this small-sized fish (Figure 4A, 4B). A photograph of eggs deposited on a waterproof sheet is shown in Figure 4C, proving that they were visible enough to be counted. After it was removed and photographed, the sheet was returned to its former place in the aquarium, and the nesting male immediately continued paternal care (Figure 4D).
Together, these techniques can be employed in experiments aimed to record the social interactions and the reproductive success of all individual fish reared. Specifically, Fukuda et al.3 investigated the reproductive ecology of T. marinae in aquaria using the above methods. The results demonstrated a positive correlation between female fecundity and female body size (Figure 5), whereas no difference in reproductive success was observed among differently size males (Figure 6). Also, T. marinae tended to establish a continuous reproductive pair and most spawning occurred within these pairs (Table 2). Only male T. marinae were observed to perform paternal egg care. The aggressive interaction between individuals suggested that the monogamous mating system may result from mainly female mate guarding.
Collection day | Collection depth | Collection method | Number of collected individuals | Stay duration | Transport day | Number of dead individuals | Survival rate | ||
Surfacing | Transport | Acclimation | |||||||
15 April 2014 | – 21 m | Surface with fish until surface. | 41 | over night | 16 April 2014 | 16 | 0 | 0 | 61 % |
23 April 2015 | – 19 m | Surface with fish until 12 m depth, pull up by rope until surface. | 15 | 1 day | 25 April 2015 | 1 | 0 | 0 | 93 % |
26 April 2016 | – 21 m | Surface with fish until 15 m depth, pull up by rope until surface. | 96 | 1 day | 28 April 2016 | 4 | 1 | 0 | 95 % |
Table 1: Collection Conditions and Fish Survival Rate. Number of dead individuals indicates when and how many individual fish died.
Table 2: Spawning Pairs during the Rearing Experiment. M, individual identity (ID) of males; F, ID of females; underlined ID, a spawned female; outlined ID, a female that mated with a male although they did not establish a continuous pair. These results indicate that T. marinae tend to establish a continuous reproductive pair as part of a monogamous mating system. This table has been modified from Fukuda et al.3 Please click here to download this table.
Figure 1: Arrangement of the VIE Tagging Positions. (A) Each numeral shows the number corresponding to the position of the injection. An individual fish's identity number is determined by matching up the position(s) of the tags. (B) An example of the individual fish No. 93.
Figure 2: A View Illustrating the Surgical Table. Please click here to view a larger version of this figure.
Figure 3: Manual and Automatic Egg Counting using ImageJ. (A) Manual counting using Cell Counter plugin. This plugin enables to count eggs grouped by some subdivision. It is an example which eggs were subdivided in four groups and counted. (B) Automatic egg counting. (C) Image which was merged the automatic egg counting image and the original picture. Please click here to view a larger version of this figure.
Figure 4: Representative Individual Identification by Injecting T. marinae with VIE Tags, and using a Waterproof Sheet for Counting Eggs Deposited on the Artificial Spawning Site. (A) Individual No. 1, identified by the pink VIE tag; a white arrow indicates the injected VIE tag. (B) Individual No. 11, identified by the two green VIE tags; the white arrows indicate the injected VIE tags. (C) Spawned eggs on a waterproof sheet. (D) Paternal care resumed by a male after the sheet with eggs had been removed and photographed, and then placed back into the aquarium. Please click here to view a larger version of this figure.
Figure 5. Relationship Between Clutch Size and Female Body Size (Total Length) in T. marinae. Solid curve, estimated fecundity in each size group of females, obtained with a generalized linear mixed-effects model. These results indicate that female reproductive success increased with body size (Pearson's correlation, r = 0.56, P <0.05, n = 16). This figure has been modified from Fukuda et al.3 Please click here to view a larger version of this figure.
Figure 6. Relationship Between Estimated Mating Success and Male Body Size (total length) in T. marinae. Each data item was estimated from the reproduction frequency of males and the estimated fecundity of females. These results indicate that males were reproductively successful irrespective of their body size (Pearson's correlation, r = ˗0.51, P >0.05, n = 8). This figure has been modified from Fukuda et al.3 Please click here to view a larger version of this figure.
The reproductive ecology of numerous fishes has often been revealed through experimental rearing. Especially, sex change6,8,14, mate choice15,16 and intraspecific competition7,17 have been frequent topics of detailed investigations using aquarium-kept fish. Furthermore, some results observed in aquaria have been later confirmed in the field8,18. These outcomes support the utility and credibility of rearing experiments with wild-caught fish in aquaria. In addition, manipulation through rearing experiments that simulate situations that may occur naturally but only rarely in wild conditions is worthwhile as a preliminary stage to larger-scale field investigations.
The protocol describes methods suitable for a small-sized substrate spawner that deposits adhesive eggs. Large variations in optimum conditions for aquarium-kept fish can be expected among species, thus warranting adjustments to some points of the protocol. In particular, five points of the protocol should be considered for adjustment after a preliminary assessment of the particular study species: (1) the time spent surfacing the fish, in protocol 1.4; (2) the concentration of the anesthesia liquid and the time spent in the anesthesia just before injecting the VIE tag, in protocols 3.1.3 and 3.1.5, respectively; (3) the needle's insertion depth when injecting the VIE tag into the fish, in protocol 3.1.8; (4) the size and form of the PVC pipe used as an artificial nest site, in protocol 3.2.1; and (5) using three egg counting methods properly, in protocol 4.6: manual count (accurate but takes time and effort), automatic count and area-density ratio estimation (efficient but rough). When there are few eggs, or when the counting grouped by some subdivision is need (such as dead or alive, developmental stage-based classification and so on), the manual counting method is recommended. When there is a large number of eggs, and the ImageJ can distinguish each egg individually, the automatic counting method may be suitable. The area-density ratio estimation is effective when there are many, and densely eggs and the ImageJ can't distinguish each egg individually.
Many species of fish may not perfectly maintain their buoyancy after being brought to the surface. However, careful surfacing according to this protocol may allow most fish to recover within one day. If fish are found floating upside down in the collection bag just after surfacing, wait to determine whether the fish is dead at least one day before removing it. If fish die soon after being brought to the surface or if they need more than one day to recover, surface more slowly or extend each time interval during surfacing in the course of subsequent collecting efforts.
In addition to VIE tags, other methods exist for identifying individual fish: colored external plastic streamers, nylon anchor tags, fin clipping, and passive integrated transponder (PIT) tags, etc. However, especially when collecting small fish, some of these techniques may increase mortality, hinder growth, or cannot be visible in situ.10 Moreover, as most external tags protrude from the fish body, a tag may restrict some behaviors of species that inhabit burrows, narrow crevices or dense seaweed beds. In contrast, many studies of small fishes found that VIE tagging had no major negative effect on mortality and growth10,11. VIE tags may also negligibly effect fish behavior since the subcutaneous tag does not protrude, however small the fish is, making it an especially suitable identification method for behavioral observations of small-sized species10. According to some previous studies, the acrylic paints also can be used in the same way as the VIE tags19,20.
Artificial spawning nest is generally used for the investigation of reproduction of fishes which spawn the demersal adhesive eggs. Previous studies used artificial nests, which are made from different kinds of materials, such as the terracotta roof tile21, the ceramic tile22, the shell23, PVC box24, etc. These artificial spawning nests may be useful for many substrate spawners. These studies suggest that availability of the artificial nest for fish, such as the shape and/or size, is more important than what it is made from. As the PVC pipe is the material that is easy to obtain and process, this paper used the PVC pipe as the spawning nest.
The limits of ecological information gained through captive-rearing observations should be well appreciated. Unsurprisingly, rearing in aquaria, in comparison with a species' natural environment, restricts various ecological conditions of the aquatic habitat (e.g., physical and chemical features of the water, food ecology, opportunities for intra- and inter-specific interactions, habitat extent, and population density). It may lead individuals to exhibit particular behaviors that differ from their natural ones. Therefore, field investigations should complement rearing observations so as to provide the best background for inferring adaptive evolution of fish reproductive behaviors.
The authors have nothing to disclose.
We thank S. Yokoyama for assistance with collecting fish. We are also grateful to W. Kawamura for helpful advice about rearing methods. This study was supported by the Japan Society for the Promotion of Science (KAKENHI) through grants (No. 24370006 and 16K07507) awarded to T.S.
Hand net | Nisso | AQ-17 | Select for the target species size. |
Polyethylene bag | San-U Fish Farm | 8194 | |
Rubber band | ESCO Co. LTD. | 78-0420-64 | ø 80 mm x 6 mm |
Oxygen cylinder | N/A | N/A | Oxgen cylinder for diving equipment suits. |
Elbagin | Japan Pet Design Co. Ltd. | 75950 | Pafurazine F (provided from same company) is equivalent drug to Elbagin. |
Polystyrene foam box | N/A | N/A | |
Pipette | AS ONE | 1-8625-04 | |
Rope | Mizukami Kinzoku Co. LTD. | 95301601 | |
Weight | N/A | N/A | Weight for diving equipment suits. |
Water tank | N/A | N/A | |
Air pump | KOTOBUKI | 4972814 062115 | |
Air stone | KOTOBUKI | 4972814 232204 | |
2-Methylquinoline | Wako | 170-00376 | |
Ethanol (99.5) | Wako | 057-00456 | |
Visible implant elastomer tag kit | Northwest Marine Technology | N/A | http://www.nmt.us/products/vie/vie.shtml |
Soft sponge | N/A | N/A | |
PVC board | N/A | N/A | 0.3 mm thickness is easy to use. |
Petri dish | N/A | N/A | A large one, such as ø 160 mm and 30 mm depth, is convenient for the injection of the VIE tag. |
Transparent acrylic board | N/A | N/A | |
UVA filtered light | N/A | N/A | |
PVC pipe | N/A | N/A | ø 5 cm |
Waterproof sheet | SOMAR Corp. | 3EKW03 | The film for the plain copier. |
Sand | N/A | N/A | |
Stereo microscope | N/A | N/A | |
Camera | N/A | N/A |