Wir präsentieren ein Protokoll, das Zellisolation und Ganzzell-Patch-Clamp-Aufzeichnung kombiniert, um die elektrischen Eigenschaften der primär dissoziierten Epithelzellen aus den Ratten-Cauda-Epididymiden zu messen. Dieses Protokoll erlaubt die Untersuchung der funktionellen Eigenschaften von primären epididymalen Epithelzellen, um die physiologische Rolle des Nebenhodens weiter zu erforschen.
Das Nebenhoden ist ein wesentliches Organ für die Spermienreifung und die reproduktive Gesundheit. Das epididymale Epithel besteht aus aufwendig verbundenen Zelltypen, die sich nicht nur in molekularen und morphologischen Merkmalen, sondern auch in physiologischen Eigenschaften unterscheiden. Diese Unterschiede spiegeln ihre vielfältigen Funktionen wider, die zusammen die notwendige Mikroumgebung für die post-testikuläre Spermienentwicklung im epididymalen Lumen bilden. Das Verständnis der biophysikalischen Eigenschaften der epididymalen Epithelzellen ist entscheidend für die Aufdeckung ihrer Funktionen in der Spermien- und Reproduktionsgesundheit, sowohl unter physiologischen als auch pathophysiologischen Zuständen. Während ihre funktionellen Eigenschaften noch nicht vollständig aufgeklärt sind, können die epididymalen Epithelzellen unter Verwendung der Patch-Clamp-Technik, einem Werkzeug zur Messung der zellulären Ereignisse und der Membraneigenschaften einzelner Zellen, untersucht werden. Hier beschreiben wir die Methoden der Zellisolation und der Ganzzell-Patch-Clamp-Aufzeichnung auf meaSicher die elektrischen Eigenschaften der primär dissoziierten Epithelzellen aus der Ratte cauda epididymide.
Die Nebenhoden im männlichen Fortpflanzungstrakt sind ein Organ, das mit einer Schicht von Mosaik-Epithelzellen ausgekleidet ist. Wie in anderen Epithelgeweben arbeiten die verschiedenen Zelltypen des epididymalen Epithels, einschließlich der Hauptzellen, klaren Zellen, Basalzellen und Zellen aus den immunologischen und lymphatischen Systemen, in einer konzertierten Weise als Barriere an der Tubulusfront und als die Stützzellen für die Spermienreifung und Physiologie 1 , 2 , 3 . So spielen diese Epithelzellen eine wesentliche Rolle in der reproduktiven Gesundheit.
Epithelzellen werden im Allgemeinen als nicht-erregbare Zellen angesehen, die aufgrund von fehlenden spannungsgesteuerten Na + – oder Ca 2+ -Kanälen 4 , 5 nicht in der Lage sind, All-or-none-Aktionspotentiale als Reaktion auf depolarisierende Stimuli zu erzeugen. Epithelzellen exprimieren jedoch uniQue Sätze von Ionenkanälen und Transportern, die ihre spezialisierten physiologischen Rollen regeln, wie Sekretion und Nährstofftransport 6 . Verschiedene Epithelzellen besitzen daher charakteristische elektrische Eigenschaften. Beispielsweise exprimieren die Hauptzellen die CFTR für den Fluid- und Chloridtransport und exprimieren den TRPV6 für die Calciumreabsorption, während die klaren Zellen die Protonenpumpe V-ATPase zur Luminesäurebildung 1 , 7 , 8 , 9 exprimieren. Manche Transporter und Ionenkanäle, die die physiologischen Merkmale der epididymalen Epithelzellen regulieren, wurden berichtet, aber die funktionellen Eigenschaften von epididymalen Epithelzellen sind weitgehend noch nicht verstanden 10 , 11 , 12 , 13 .
WhOle-Zell-Patch-Clamp-Aufzeichnung ist eine etablierte Technik zur Untersuchung der intrinsischen Eigenschaften sowohl erregbarer als auch nicht erregbarer Zellen und ist besonders hilfreich für die Untersuchung der Funktionen von primär dissoziierten Zellen in heterogenen Zellproben; Die Spannungsklemme dient zur Messung der passiven Membraneigenschaften und der Ionenströme einzelner Zellen 14 , 15 . Die passiven Membraneigenschaften umfassen Eingangswiderstand und Kapazität. Der frühere Parameter gibt die intrinsische Membranleitfähigkeit an, während letzteres die Oberfläche der Zellmembran impliziert (eine Phospholipiddoppelschicht, bei der sich Ionenkanäle und Transporter befinden, die als dünner Isolator dienen, der extrazelluläre und intrazelluläre Medien trennt). Die Membrankapazität ist direkt proportional zur Oberfläche der Zellmembran. Zusammen mit dem Membranwiderstand, der durch den Eingangswiderstand reflektiert wird, ist die Membranzeitkonstante, wWas zeigt, wie schnell das Zellmembranpotential auf den Fluss von Ionenkanalströmen reagiert, kann bestimmt werden. In dieser Hinsicht werden durch die Kombination der Stromansprechcharakteristiken aus einer Reihe von an die Zellen angelegten Spannungsschritten die biophysikalischen Kinetiken und Eigenschaften der Zellen bestimmt 15 , 16 , 17 , 18 .
In der vorliegenden Arbeit beschreiben wir die Verfahren zur Isolierung von Epithelzellen aus dem Ratten-Cauda-Nebenhoden und die Schritte zur Messung der Membraneigenschaften verschiedener Zelltypen in der dissoziierten Zellmischung unter Verwendung der Ganzzell-Patch-Clamp. Wir zeigen, dass die epididymalen Hauptzellen unterschiedliche elektrophysiologische Membranen aufweisen und dass die Leitwerte leicht aus anderen Zelltypen identifiziert werden können.
In diesem Protokoll führte die enzymatische Dispersion der Ratten-Cauda-Epididymide konsequent zu gesunden Epithelzellen. Die Qualität der epididymalen Epithelzellen für die Patch-Clamp-Experimente hängt von einigen kritischen Schritten im Protokoll ab. Zum Beispiel ist die Zentrifugation der Zellmischung bei einer niedrigen Zentrifugalkraft (30 xg) für die Entfernung der Spermatozoen und des epididymalen Lumeninhalts wichtig; Die epididymalen Epithelzellen werden in Gegenwart der Spermatozoen in der Zellkultur ung…
The authors have nothing to disclose.
Wir danken Dr. Christopher Antos für hilfreiche Kommentare zum Text. Diese Arbeit wurde unterstützt durch Start-up-Finanzierung von ShanghaiTech University verliehen an Winnie Shum und durch die Finanzierung von der National Natural Science Foundation von China (NNSFC Nr. 31471370).
Instrument of AXON system | |||
Computer controlled amplifier | Molecular Devices – Axon | Multiclamp 700B patch-clamp amplifier | |
Digital Acquisition system | Molecular Devices – Axon | Digidata 1550 converter | |
Microscope | Olympus | BX-61WI | |
Micromanipulator | Sutter Instruments | MPC-325 | |
Recording chamber and in-line Heater | Warner Instruments | TC-324C | |
Instrument of HEKA system | |||
Patch Clamp amplifier | Harvard Bioscience – HEKA | EPC-10 USB double | |
Microscope | Olympus | IX73 | |
Micromanipulator | Sutter Instruments | MPC-325 | |
Recording chamber and in-line Heater | Warner Instruments | TC-324C | |
Other Instrument | |||
Micropipette Puller | Sutter Instrument | P-1000 | |
Recording Chamber | Warner Instruments | RC-26G or homemade chamber | |
Borosilicate capillary glass with filament | Sutter Instrument / Harvard Apparatus | BF150-86-10 | |
Vibration isolation table | TMC | 63544 | |
Digital Camare | HAMAMASTU | ORCA-Flash4.0 V2 C11440-22CU | |
Reagents for isolation | |||
RPMI 1640 medium | Gibco | 22400089 | |
Penicillin/Streptomycin | Gibca | 15140112 | |
IMDM | ATCC | 30-2005 | |
IMDM | Gibco | C12440500BT | |
Collagenase I | Sigma | C0130 | |
Collagenase II | Sigma | C6885 | |
5-α-dihydrotestosterone | Medchemexpress | HY-A0120 | |
Fetal bovine serum | capricorn | FBS-12A | |
Micropipette internal solutions (K+-based solution) (pH 7.2, 280-295 mOsm) | |||
KCl, 35mM | Sigma/various | V900068 | |
MgCl2 · 6H2O, 2mM | Sigma/various | M2393 | |
EGTA, 0.1mM | Sigma/various | E4378 | |
HEPES, 10mM | Sigma/various | V900477 | |
K-gluconate, 100mM | Sigma/various | P-1847 | |
Mg-ATP, 3mM | Sigma/Various | A9187 | |
The standard external recording physiological salt solution (PSS) (pH 7.4, 300-310 mOsm) | |||
NaCl, 140mM | Sigma/various | V900058 | |
KCl, 4.7mM | Sigma/various | V900068 | |
CaCl2, 2.5mM | Sigma/various | V900266 | |
MgCl2 · 6H2O, 1.2mM | Sigma/various | M2393 | |
NaH2PO4, 1.2mM | Sigma/various | V900060 | |
HEPES, 10mM | Sigma/various | V900477 | |
Glucose, 10mM | Sigma/various | V900392 | |
For pH adjustment | |||
NaOH | Sigma/various | V900797 | Purity >=97% |
KOH | Sigma/various | 60371 | Purity >=99.99% |