概要

啮齿动物疟原虫无性、性血期和蚊子阶段的类状分析

Published: May 30, 2019
doi:

概要

由于啮齿动物疟原虫的生命周期和生物学与人类疟原虫有着惊人的相似性,啮齿动物疟疾模型已成为疟疾研究不可或缺的一部分。在这里,我们标准化了野生型和转基因啮齿动物疟疾物种的类名分析中使用的一些最重要的技术。

Abstract

遗传学和系统生物学技术的最新进展促进了我们对疟原虫生物学在分子水平上的理解。然而,疫苗和化疗开发的有效疟原虫目标仍然有限。这主要是由于人类疟原虫物种缺乏相关和实用的体内感染模型,最显著的是恶性疟原虫和P.vivax。 因此,啮齿动物疟疾物种在体内被广泛用作疟疾疫苗、药物靶向、免疫反应和保存的疟原虫基因的功能表征研究的实用替代物。事实上,啮齿动物疟疾模型已被证明是无价的,特别是对于探索蚊子传播和肝阶段生物学,并且对于免疫学研究是必不可少的。然而,用于评估转基因和野生类无性及性血期寄生虫的表型的方法存在差异。这些差异的例子包括选择静脉注射内腹感染啮齿动物与血期寄生虫,以及评估雄性Gamete灭菌。本文详细介绍了标准化的实验方法,以评估转基因寄生虫中无性血和性血阶段的表型,表达报告基因或野生型啮齿动物疟原虫物种。我们还详细介绍了评估疟原虫蚊媒内疟原虫阶段(配子、卵母细胞、卵泡和孢子菌)的表型的方法。 这些方法在这里详细和简化,用于P.berghei和P.yoelii的致命和非致命菌株,但也可用于对P.chabaudi和P.vinckei啮齿动物疟疾物种进行一些调整。

Introduction

疟原虫在全世界造成数以亿计的疟疾感染,每年有60多万人死于疟疾。人类感染是由五种疟原虫引起的,即恶性疟原虫、疟原虫、疟原虫、疟原虫和疟原虫。 大多数临床疟疾死亡是由撒哈拉以南非洲地区恶性疟原虫引起的。另一种在撒哈拉沙漠以南的非洲地区引起广泛全球病症的人类疟原虫是P.vivax2。其他三个物种都更受地理限制,并引起良性疟疾感染,除了致命的P. 缺乏相关和实际的非人类体内感染模型一直是而且仍然是疟疾疫苗和药物开发的障碍。早期的疟疾药物靶向和代谢研究已经广泛依赖于禽流感模型,如胆和P.lophurae,分别感染鸡和鸭,分别4。此后,各种疫苗和药物靶向研究逐渐引入啮齿动物疟疾物种,作为体内模型。多年来,啮齿动物疟疾模型与人类疟疾物种的生物学和宿主-寄生虫相互作用的相似性证据不断积累。

特别是,啮齿动物疟疾模型对于探索和描述蚊子生物学和红细胞前第5阶段极为重要。然而,有四种啮齿动物疟疾物种(P.berghei,P.yoelii,P.chabaudi和P.vinckei)具有不同的生物特征,其中最显著的是血液阶段6。 疟疾的疟疾物种在血液阶段的同步性上有所不同,其中P.chabaudi和P.vinckei菌株的血期大部分是同步的,而P.berghei和P.yoelii的血期不是6,7.另一个显著区别是某些菌株(例如,P. yoelii 17X-NL、P. berghei NK65 和P. vinckei lentum)的血液阶段的自我清除,而其他菌株的血液感染如果得不到治疗,同一物种的菌株可能是致命的(P.yoelii 17X-L,P. berghei ANKA 和P. chabaudi AS)。此外,P.yoelii 17X-NL 菌株和P. berghei ANKA 菌株优先入侵视网膜 8、9、10、11,尽管 P 的这些特征。尤利和宝海菌株不是严格的生长要求12,13,14。因此,在感染这些寄生虫的血液阶段之前,小鼠使用苯乙酰乙酰胺进行治疗,以增加P.berghei ANKA菌株和P.yoelii的蚊子感染所需的寄生虫血症和肌细胞血症17X-NL15,16,17,18,19

不同啮齿动物疟疾物种之间也存在蚊子阶段发育的差异,其中最显著的是最佳蚊子阶段发育所需的温度和时间以及孢子菌长度5、6 20.在啮齿动物疟疾菌群的红细胞前阶段,差异包括最易感染孢子菌的啮齿动物种类和菌株,易感啮齿动物菌株接种所需的孢子菌数量,体外肝阶段发育测定所需的哺乳动物细胞类型,以及完成肝阶段发育的时间5、21、22、23、24、25 ,26,27,28,29,30.

尽管存在这些变异性,啮齿动物疟原虫在早期是应用反向遗传方法的有利模型,因为它们较少耗费时间和资源,成功概率高31。事实上,啮齿动物疟疾模型是最好的模型,在许多情况下,是唯一的模型,可用于功能特征基因表达在蚊子和肝脏阶段多年。

鉴于反向遗传方法在啮齿动物疟疾模型中的流行性和可得性,已采用多种不同的方法分析转基因寄生虫生命周期阶段的表型,特别是血液阶段。然而,其中一些方法不一致;例如,比较注射IP后血期寄生虫的感染(可能排到围肠淋巴结,从那里进入血液;因此,注射的寄生虫在血液中不会同样地进入),将克隆的蚊子传播与不同数量的序列血阶段转移或G数(可能影响细胞生成32,33)进行比较,或将转基因寄生虫直接与幼稚的野生型(WT)进行比较从未接受电穿孔和阳性药物选择以及各种非标准化的雄性配药除虫评价的寄生虫。因此,对血液和蚊子中任何类型的转基因或WT啮齿动物疟原虫进行类称分析,以适应啮齿动物疟疾的生物变异性,使简单易遵循的协议标准化至关重要。寄生虫物种。

本文报告转基因或野生P.yoelii和P.berghei寄生虫的血液和蚊子生命周期阶段的标准化、详细的实验方案。这些协议也适用于P.chabaudi和P.vinckei寄生虫。

Protocol

这里描述的所有动物实验都是根据杜兰大学机构动物护理和使用委员会(IACUC)和贝兹米亚莱姆·瓦基夫大学动物伦理委员会批准的规程进行的。所有其他实验规程和重组DNA的使用都是根据杜兰大学机构生物安全委员会(IBC)批准的规程进行的。 1. 小鼠感染血期寄生虫,用于寄生虫病分析和蚊子感染分析 第3天:可选地将苯乙酰胺注射到受体小鼠中 使用 26 G …

Representative Results

将反向遗传工具和技术应用于疟原虫的成功彻底改变了疟疾研究领域,能够添加、删除或修改几种疟原虫物种39的特定基因组片段。重要的是,可分配基因组位点已被识别并成功用于通过双同源重组在啮齿动物和人类疟原虫中引入荧光蛋白标记物,以确保在所有生命周期阶段具有稳定的表达40 ,41,<sup c…

Discussion

尽管小鼠疟疾模型在一般生物学中与人类疟原虫的生命周期相似,但鼠疟疾模型与人类疟原虫物种也有许多不同,这将限制其作为可靠体内模型的使用。例如,除了作为疫苗的活减毒寄生虫外,所有带有亚单位、DNA和其他疫苗的疫苗研究在小鼠模型中都取得了优异的结果,但在生活在流行地区的人类中,结果远不能令人满意。

另一个问题是生命周期阶段感染性从一个小?…

開示

The authors have nothing to disclose.

Acknowledgements

Ahmed Aly 得到土耳其发展部 2015BSV036 赠款给 Bezmialem Vakif 大学的资金支持,以及杜兰大学公共卫生和热带医学学院提供的资金,以及 NIH-NIAID 为 R21Grant 提供的资金1R21AI111058-01A1。

Materials

Heparin Sigma 375095-100KU
Xanthurenic acid Sigma D120804-5G
Hypoxanthine Sigma H9377-25G
Alsever's solution Sigma A3551-500ML
Sodium Bicarbonate Sigma S5761-500G
Phenylhydrazine Sigma P26252-5G
Glycerol Sigma G5516-500ML
Giemsa Sigma GS1L-1L
26G x 3/8 Precision Glide Needle,  Becton Dickinson 305110
1 ml TB Syringe, 26G x 3/8 Becton Dickinson 309625
1 cc Insulin Syringe, U-100 27G Becton Dickinson 329412
Isoflurane, USB Piramal 2667- 46- 7
PBS, pH 7.4 Gibco 10010049
RPMI Gibco 22400105
DMEM Gibco 11995065
Pencillin/ Streptomycin Gibco 10378016
Fetal Bovine Serum Gibco 10082147
Fiber Glass Wool Corning 3950

参考文献

  1. Who/Unicef Report. Malaria Mdg Target Achieved Amid Sharp Drop in Cases and Mortality, but 3 Billion People Remain at Risk. Neurosciences (Riyadh). 21, 87-88 (2016).
  2. Naing, C., Whittaker, M. A., Nyunt Wai, V., Mak, W. J. Is Plasmodium vivax malaria a severe malaria?: a systematic review and meta-analysis. PLoS Neglected Tropical Diseases. 8, e3071 (2014).
  3. Millar, S. B., Cox-Singh, J. Human infections with Plasmodium knowlesi–zoonotic malaria. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases. 21, 640-648 (2015).
  4. Spry, C., Kirk, K., Saliba, K. J. Coenzyme A biosynthesis: an antimicrobial drug target. FEMS Microbiology Reviews. 32, 56-106 (2008).
  5. Aly, A. S., Vaughan, A. M., Kappe, S. H. Malaria parasite development in the mosquito and infection of the mammalian host. Annual Review of Microbiology. 63, 195-221 (2009).
  6. Stephens, R., Culleton, R. L., Lamb, T. J. The contribution of Plasmodium chabaudi to our understanding of malaria. Trends in Parasitology. 28, 73-82 (2012).
  7. Bagnaresi, P., et al. Unlike the synchronous Plasmodium falciparum and P. chabaudi infection, the P. berghei and P. yoelii asynchronous infections are not affected by melatonin. International Journal of General Medicine. 2, 47-55 (2009).
  8. Cromer, D., Evans, K. J., Schofield, L., Davenport, M. P. Preferential invasion of reticulocytes during late-stage Plasmodium berghei infection accounts for reduced circulating reticulocyte levels. International Journal for Parasitology. 36, 1389-1397 (2006).
  9. Jayawardena, A. N., Mogil, R., Murphy, D. B., Burger, D., Gershon, R. K. Enhanced expression of H-2K and H-2D antigens on reticulocytes infected with Plasmodium yoelii. Nature. 302, 623-626 (1983).
  10. Okada, H., et al. A transient resistance to blood-stage malaria in interferon-gamma-deficient mice through impaired production of the host cells preferred by malaria parasites. Frontiers in Microbiology. 6, 600 (2015).
  11. Walliker, D., Sanderson, A., Yoeli, M., Hargreaves, B. J. A genetic investigation of virulence in a rodent malaria parasite. Parasitology. 72, 183-194 (1976).
  12. Deharo, E., Coquelin, F., Chabaud, A. G., Landau, I. The erythrocytic schizogony of two synchronized strains of plasmodium berghei, NK65 and ANKA, in normocytes and reticulocytes. Parasitology Research. 82, 178-182 (1996).
  13. Fahey, J. R., Spitalny, G. L. Virulent and nonvirulent forms of Plasmodium yoelii are not restricted to growth within a single erythrocyte type. Infection and Immunity. 44, 151-156 (1984).
  14. Srivastava, A., et al. Host reticulocytes provide metabolic reservoirs that can be exploited by malaria parasites. PLoS Pathogens. 11, e1004882 (2015).
  15. Hart, R. J., et al. Genetic Characterization of Plasmodium Putative Pantothenate Kinase Genes Reveals Their Essential Role in Malaria Parasite Transmission to the Mosquito. Scientific Reports. 6, 33518 (2016).
  16. Hart, R. J., Ghaffar, A., Abdalal, S., Perrin, B., Aly, A. S. Plasmodium AdoMetDC/ODC bifunctional enzyme is essential for male sexual stage development and mosquito transmission. Biology Open. 5, 1022-1029 (2016).
  17. Hart, R. J., Lawres, L., Fritzen, E., Ben Mamoun, C., Aly, A. S. Plasmodium yoelii vitamin B5 pantothenate transporter candidate is essential for parasite transmission to the mosquito. Scientific Reports. 4, 5665 (2014).
  18. Ramakrishnan, C., et al. Laboratory maintenance of rodent malaria parasites. Methods in Molecular Biology. 923, 51-72 (2013).
  19. Hart, R. J., Abraham, A., Aly, A. S. I. Genetic Characterization of Coenzyme A Biosynthesis Reveals Essential Distinctive Functions during Malaria Parasite Development in Blood and Mosquito. Frontiers in Cellular and Infection Microbiology. 7, 260 (2017).
  20. Vanderberg, J. P., Yoeli, M. Effects of temperature on sporogonic development of Plasmodium berghei. The Journal of Parasitology. 52, 559-564 (1966).
  21. Vaughan, A. M., Aly, A. S., Kappe, S. H. Malaria parasite pre-erythrocytic stage infection: gliding and hiding. Cell Host & Microbe. 4, 209-218 (2008).
  22. Briones, M. R., Tsuji, M., Nussenzweig, V. The large difference in infectivity for mice of Plasmodium berghei and Plasmodium yoelii sporozoites cannot be correlated with their ability to enter into hepatocytes. Molecular and Biochemical Parasitology. 77, 7-17 (1996).
  23. Hollingdale, M. R., Leland, P., Leef, J. L., Beaudoin, R. L. The influence of cell type and culture medium on the in vitro cultivation of exoerythrocytic stages of Plasmodium berghei. The Journal of Parasitology. 69, 346-352 (1983).
  24. House, B. L., Hollingdale, M. R., Sacci, J. B., Richie, T. L. Functional immunoassays using an in vitro malaria liver-stage infection model: where do we go from here?. Trends in Parasitology. 25, 525-533 (2009).
  25. Khan, Z. M., Vanderberg, J. P. Role of host cellular response in differential susceptibility of nonimmunized BALB/c mice to Plasmodium berghei and Plasmodium yoelii sporozoites. Infection and Immunity. 59, 2529-2534 (1991).
  26. Most, H., Nussenzweig, R. S., Vanderberg, J., Herman, R., Yoeli, M. Susceptibility of genetically standardized (JAX) mouse strains to sporozoite- and blood-induced Plasmodium berghei infections. Military Medicine. 131 (Suppl), 915-918 (1966).
  27. Nussenzweig, R., Herman, R., Vanderberg, J., Yoeli, M., Most, H. Studies on sporozoite-induced infections of rodent malaria. 3. The course of sporozoite-induced Plasmodium berghei in different hosts. The American Journal of Tropical Medicine and Hygiene. 15, 684-689 (1966).
  28. Silvie, O., Franetich, J. F., Boucheix, C., Rubinstein, E., Mazier, D. Alternative invasion pathways for Plasmodium berghei sporozoites. International Journal for Parasitology. 37, 173-182 (2007).
  29. Tarun, A. S., et al. Protracted sterile protection with Plasmodium yoelii pre-erythrocytic genetically attenuated parasite malaria vaccines is independent of significant liver-stage persistence and is mediated by CD8+ T cells. The Journal of Infectious Diseases. 196, 608-616 (2007).
  30. Weiss, W. R., Good, M. F., Hollingdale, M. R., Miller, L. H., Berzofsky, J. A. Genetic control of immunity to Plasmodium yoelii sporozoites. The Journal of Immunology. 143, 4263-4266 (1989).
  31. Philip, N., Orr, R., Waters, A. P. Transfection of rodent malaria parasites. Methods in Molecular Biology. 923, 99-125 (2013).
  32. Janse, C. J., Ponzi, M., Sinden, R. E., Waters, A. P. Chromosomes and sexual development of rodent malaria parasites. Memorias do Instituto Oswaldo Cruz. 89 (Suppl), 43-46 (1994).
  33. Sinha, A., et al. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature. 507, 253-257 (2014).
  34. Malleret, B., et al. A rapid and robust tri-color flow cytometry assay for monitoring malaria parasite development. Scientific Reports. 1, 118 (2011).
  35. Aly, A. S., Matuschewski, K. A malarial cysteine protease is necessary for Plasmodium sporozoite egress from oocysts. The Journal of Experimental Medicine. 202, 225-230 (2005).
  36. Aly, A. S., Lindner, S. E., MacKellar, D. C., Peng, X., Kappe, S. H. SAP1 is a critical post-transcriptional regulator of infectivity in malaria parasite sporozoite stages. Molecular Microbiology. 79, 929-939 (2011).
  37. Aly, A. S., et al. Targeted deletion of SAP1 abolishes the expression of infectivity factors necessary for successful malaria parasite liver infection. Molecular Microbiology. 69, 152-163 (2008).
  38. Ozaki, L. S., Gwadz, R. W., Godson, G. N. Simple centrifugation method for rapid separation of sporozoites from mosquitoes. The Journal of Parasitology. 70, 831-833 (1984).
  39. de Koning-Ward, T. F., Gilson, P. R., Crabb, B. S. Advances in molecular genetic systems in malaria. Nature Reviews. Microbiology. 13, 373-387 (2015).
  40. Janse, C. J., Ramesar, J., Waters, A. P. High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nature Protocols. 1, 346-356 (2006).
  41. Lin, J. W., et al. A novel ‘gene insertion/marker out’ (GIMO) method for transgene expression and gene complementation in rodent malaria parasites. PLoS One. 6, e29289 (2011).
  42. Manzoni, G., et al. A rapid and robust selection procedure for generating drug-selectable marker-free recombinant malaria parasites. Scientific Reports. 4, 4760 (2014).

Play Video

記事を引用
Aly, A. S., Deveci, G., Yilmaz, I., Abraham, A., Golshan, A., Hart, R. J. Phenotypic Analysis of Rodent Malaria Parasite Asexual and Sexual Blood Stages and Mosquito Stages. J. Vis. Exp. (147), e55688, doi:10.3791/55688 (2019).

View Video