We describe a basic experimental approach for analysis of termination of transcription by RNA polymerase II in vivo using BrUTP by the strand-specific transcription run-on (TRO) approach in budding yeast. This protocol can be extended to study transcription termination by other RNA polymerases both in yeast and higher eukaryotes.
This manuscript describes a protocol for detecting transcription termination defect in vivo. The strand-specific TRO protocol using BrUTP described here is a powerful experimental approach for analyzing the transcription termination defect under physiological conditions. Like the traditional TRO assay, it relies on the presence of a transcriptionally active polymerase beyond the 3′ end of the gene as an indicator of a transcription termination defect1. It overcomes two major problems encountered with the traditional TRO assay. First, it can detect if the polymerase reading through the termination signal is the one that initiated transcription from the promoter-proximal region, or if it is simply representing a pervasively transcribing polymerase that initiated non-specifically from somewhere in the body or the 3′ end of the gene. Secondly, it can distinguish if the transcriptionally active polymerase signal beyond the terminator region is truly the readthrough sense mRNA transcribing polymerase or a terminator-initiated non-coding anti-sense RNA signal. Briefly, the protocol involves permeabilizing the exponentially growing yeast cells, allowing the transcripts that initiated in vivo to elongate in the presence of the BrUTP nucleotide, purifying BrUTP-labelled RNA by the affinity approach, reverse transcribing the purified nascent RNA and amplifying the cDNA using strand-specific primers flanking the promoter and the terminator regions of the gene2.
The eukaryotic transcription cycle consists of three major steps; initiation, elongation and termination. The termination of transcription by RNA polymerase II consists of two distinct, interdependent steps3. The first step involves cleavage, polyadenylation and release of mRNA from the template, and is immediately followed by the second step, marked by disengagement of polymerase from the template. Proper termination is crucial for the recycling of the polymerase during initiation/reinitiation of transcription, for preventing interference with the transcription of downstream genes, and for keeping aberrant transcription in check by limiting transcription of pervasive non-coding RNA4,5. Despite recent advances, termination is by far the least understood step of the RNA polymerase II transcription cycle. A reliable termination assay is essential for studying the mechanism underlying termination of transcription by RNA polymerase II in vivo.
A number of experimental approaches are used to detect the termination defect in an actively transcribing gene under physiological conditions. These include Northern blot, termination factor ChIP (Chromatin Immunoprecipitation) and the traditional TRO assay. Each of these techniques have some advantages and disadvantages. The traditional TRO assay used to be the most reliable and sensitive approach for detection of a transcription termination defect in vivo1. This assay localizes the transcriptionally active polymerase molecules on different regions of a gene inside the cell. Under normal conditions, the assay shows transcriptionally engaged polymerase molecules strictly distributed between the promoter and terminator region of the gene (Figure 1A). Upon defective termination, however, the polymerase is unable to read the termination signal and is detected in the region downstream of the 3′ end of the gene (Figure 1B).
A transcription termination defect is manifested in the presence of a sense-transcribing polymerase that initiated from the promoter-proximal region, and being unable to read the termination signal, continues transcribing the region downstream of the 3′ end of a gene as shown in Figure 2A. With the realization that the eukaryotic genome exhibits overwhelming pervasive transcription in sense as well as anti-sense directions in and around a gene 6,7,8,9,10, it soon became clear that the traditional TRO assay cannot detect if the polymerase signal downstream of a gene represents a promoter-initiated transcript (Figure 2A) or an aberrant RNA that initiated somewhere in the middle of the gene or downstream of the terminator element (Figure 2B), or the polymerase transcribing in the anti-sense direction from the 3′ end of the gene (Figure 2C). The strand-specific TRO assay using BrUTP described here can distinguish if the observed readthrough polymerase signal represents promoter-initiated extended sense mRNA or an anti-sense transcript that initiated downstream of the gene under examination. We have successfully used this approach to demonstrate the role of Kin28 kinase in termination of transcription in budding yeast2. Employing the approach here we show that Rna14 is required for termination of transcription of ASC1 in budding yeast.
NOTE: This method was used in the research article reported in Medler, S and Ansari, A.2.
1. Culturing and Harvesting the Cells
2. Permeabilizing and Preparing Cells for Run-on Assay
3. Transcription Run-on Reaction
4. RNA Extraction
5. Affinity Purification of BrUTP-labeled RNA
6. Precipitation of BrUTP Labeled RNA
7. Reverse Transcription of BrUTP-labeled RNA
8. Amplification of cDNA
To demonstrate the applicability of the BrUTP-strand-specific TRO procedure in detecting a transcription termination defect, we used a termination-defective, temperature-sensitive mutant of RNA14 called rna14-1. The role of Rna14 in termination of transcription by RNA polymerase II was demonstrated using the traditional TRO assay that detected RNA in the terminator-proximal region of selected genes1. The detection of RNA signal beyond the terminator region in the rna14-1 mutant at the non-permissive temperature was construed as the termination defect. The observed signal, however, could be ascribed to the pervasively transcribing polymerase that initiated transcription from somewhere near the 3′ end of the gene as shown in Figure 2B. To conclusively demonstrate the role of Rna14 in termination, we performed BrUTP-strand-specific TRO in the rna14-1 mutant and the isogenic wild type strain at 37 °C. We expected that in the wild type strain, the TRO signal will be constrained between the promoter and terminator regions as shown in Figure 1A. In the rna14-1 mutant, however, the polymerase will read through the termination signal and the TRO signal will be detected beyond the 3′ end of the gene as shown in Figure 1B and 2A.
Briefly, we grew the rna14-1 mutant and its isogenic wild type cells at 25 °C to mid-log phase and then shifted cells to 37 °C for three hours. Transcription run-on assay was performed to incorporate BrUTP into nascent RNA synthesized by an actively transcribing RNA polymerase as described above. The BrUTP labeled RNA was purified and reverse transcribed using primers C, D, E, F, and G shown in Figure 3A. The corresponding cDNA was PCR amplified using primer pairs B-C, B-D, B-E, B-F, and B-G and fractionated on agarose gels (Figure 3B). Quantification of gels is shown in Figure 3C. The presence of PCR amplified products from the primer pairs B-E, B-F, and B-G in the rna14-1 mutant reflects a termination read through phenotype (Figure 3B, Lane 11 – 13; and Figure 3C, regions E, F and G). In the wild type cells, however, the TRO signal was limited till the terminator element (Figure 3B, Lanes 2 and 3; and Figure 3C, regions C and D). There was no detectable TRO signal beyond the terminator region (Figure 3B, Lane 4 – 6; and Figure 3C, regions E, F and G). Thus, we could detect the promoter-initiated nascent transcripts that read through the termination signal in the mutant but not in the wild type cells, thereby confirming that Rna14 is a termination factor.
Figure 1: Transcription Run-on (TRO) Assay Detects the Presence of Transcriptionally Active RNA Polymerase in Different Regions of a Gene. (A) When termination is normal, there is no polymerase signal beyond the terminator region. (B) Upon defective termination, the polymerase is unable to read the termination signal and can be detected beyond the 3′ end of the gene. Please click here to view a larger version of this figure.
Figure 2: Strand-specific TRO Assay. The strand-specific TRO assay can detect if the presence of a transcriptionally active polymerase beyond the 3′ end of the gene is a true termination defect due to a promoter-initiated polymerase reading through the termination signal (A), or it is simply a pervasively transcribing polymerase transcribing in sense direction (B), or it is the anti-sense ncRNA transcribing polymerase initiating from the 3′ end (C). Please click here to view a larger version of this figure.
Figure 3: Rna14 is a Termination Factor as Polymerase Reads through the Termination Signal in the rna14-1 Mutant. (A) Schematic depiction of ASC1 gene showing the position of the forward primer B and five reverse primers, C, D, E, F, and G used for cDNA synthesis of purified BrUTP-labeled RNA. (B) cDNA made from reverse primers C, D, E, F and G was PCR amplified using the primers pairs B-C, B-D, B-E, B-F and B-G respectively. (C) The quantitative analysis of TRO data shown in (B) above in wild type and rna14-1 cells at 37 °C. 5S RNA was used as the normalization control. The error bars represent one full unit of standard deviation based on a minimum of three trials. Please click here to view a larger version of this figure.
The strand-specific TRO protocol used here was adapted from the protocol used for GRO-Seq (Global Run On-Sequencing) analysis in mammalian cells12. We successfully modified the protocol to study nascent transcription in budding yeast. To specifically analyze the transcription termination defect, we adjusted the protocol further by getting rid of the RNA hydrolysis step. This allowed us to specifically detect the full length nascent transcripts that initiated from the transcription start site near the promoter region.
There are several critical steps in the protocol that should be performed with utmost caution to get a meaningful result. First, the protocol must be performed with exponentially growing yeast cells. The cells in the log phase (A600 ~ 0.8 – 1.0) give the best results as the majority of cells at this stage are actively growing and exhibit robust transcription. Second, the RNA isolation step should be performed as quickly as possible at a temperature between 2 – 4 °C. Third, before affinity purification of Br-UMP labelled RNA, unincorporated BrUTP should be removed from the RNA preparation. We used a RNA kit to get rid of BrUTP from the purified RNA preparation. Fourth, the use of a robust reverse transcriptase is critical for successful accomplishment of the protocol.
The strand-specific TRO protocol used here has advantages over the Northern blot technique in detecting the termination defect as it is more sensitive, faster and exhibits higher resolution. This protocol is also better than the traditional TRO protocol as it can distinguish the sense transcripts from the anti-sense transcripts and if the observed result is due to promoter-initiated transcription or aberrant transcription starting from a promoter downstream region. The strand-specific TRO protocol has some limitations. It is more laborious and time consuming than steady state mRNA detection techniques. It requires large number of cells. Therefore, the analysis of transcription of low transcribing genes might be a problem.
We have successfully used this technique to study the termination defect in the RNA polymerase II transcription cycle in budding yeast2. The approach can be extended to study termination of transcription by RNA polymerase I and RNA polymerase III in yeast as well. With appropriate modifications, the approach can also be applied to study the transcription termination defect in higher eukaryotes. Overall, the technique is relatively inexpensive, highly reproducible and requires standard equipment used in a molecular biology laboratory.
The authors have nothing to disclose.
Research in Ansari lab was supported by the research grant (No. MCB 1020911) from National Science Foundation.
Phenol -chloroform-isoamyl alcohol mixture | Sigma-Aldrich | 77619 | pH 4-5 |
TRIzol reagent | Life technologies | 15596-026 | |
RNase Inhibitor, human placenta | New England Biolabs | M0307S | |
Anti-BrdU beads | Santa Cruz Biotechnology | sc-32323AC | |
Protoscript II | New England Biolabs | M03368L | or an equivalent enzyme |
Advantage 2 polymerase Mix | Clontech | 639201 | or an equivalent enzyme |
5-Bromouridine 5' triphosphate sodium salt | Santa Cruz Biotechnology | sc-214314A | |
RNeasy Mini kit | Qiagen | 74104 | |
ATP | New England Biolabs | N0451AA | |
CTP | N0454AA | ||
GTP | N0452AA | ||
Ultra-pure bovine serum albumin (BSA) | MC Labs | UBSA-100 | |
Asc1 B | AGATTCGTCGGTCACAAGTCC | ||
Asc1 C | GAACTTTATACATATTCTTAGTT AGCAGTC |
||
Asc1 D | TGTACATATGTATTTTCGCAGCA | ||
Asc1 E | GCCAAGGAGACTGAATTTAATG | ||
Asc1 F | CTATGGAATGGGGGTTTTAAG | ||
Asc1 G | GGTTATGGCAGACATGCCAC | ||
5s cDNA | AGATTGCAGCACCTGAGT | ||
5’ 5s reverse | GGTTGCGGCCATATCTAC | ||
3’ 5s reverse | TGAGTTTCGCGTATGGTC |