In this article we explain how to set up a concurrent transcranial alternating current stimulation and EEG experiment.
Oscillatory brain activities are considered to reflect the basis of rhythmic changes in transmission efficacy across brain networks and are assumed to integrate cognitive neural processes. Transcranial alternating current stimulation (tACS) holds the promise to elucidate the causal link between specific frequencies of oscillatory brain activity and cognitive processes. Simultaneous electroencephalography (EEG) recording during tACS would offer an opportunity to directly explore immediate neurophysiological effects of tACS. However, it is not trivial to measure EEG signals during tACS, as tACS creates a huge artifact in EEG data. Here we explain how to set up concurrent tACS-EEG experiments. Two necessary considerations for successful EEG recording while applying tACS are highlighted. First, bridging of the tACS and EEG electrodes via leaking EEG gel immediately saturates the EEG amplifier. To avoid bridging via gel, the viscosity of the EEG gel is the most important parameter. The EEG gel must be viscous to avoid bridging, but at the same time sufficiently fluid to create contact between the tACS electrode and the scalp. Second, due to the large amplitude of the tACS artifact, it is important to consider using an EEG system with a high resolution analog-to-digital (A/D) converter. In particular, the magnitude of the tACS artifact can exceed 100 mV at the vicinity of a stimulation electrode when 1 mA tACS is applied. The resolution of the A/D converter is of importance to measure good quality EEG data from the vicinity of the stimulation site. By following these guidelines for the procedures and technical considerations, successful concurrent EEG recording during tACS will be realized.
外的电流在脑的节奏动力学已经观察到了一个世纪1,2。虽然大部分时间被认为是在数据非特异性噪声,今天它们被广泛认为是在大脑3,4,5,6,7,8,9起到信息处理的主要作用。我们的振荡大脑活动和认知过程的特定频率之间的因果关系的理解,通过各种干预措施的发展拥有先进在过去十年中的方法直接调制振荡活动8,10。颅交流电刺激(TACS)就是这样的一个有希望的方法来调制节律活动在脑中10。 TACS是一种非侵入性脑刺激方法,它适用于弱交替(正弦)电流从头皮并调制大脑皮层的兴奋性中的频率特异性方式11,图12,</ SUP> 13,14,15。虽然是一个有希望的技术为研究大脑中的节律活动的作用,TACS的神经生理机制仍然难以捉摸。一些研究报告TACS对高阶认知过程23,24,25,26,27,28上感知11,13,16,17,18效果和运动功能19,20,21,22,以及效果。神经生理学的证据刺激后夹带脑振荡已经提出使用脑电图13,14,15。目前在人类中用于TACS的效果神经生理学证据刺激12,13,22中报道很少。由于大脑对外界扰动非常强劲,如网上证据对于理解总可捕量的直接神经生理的影响至关重要。
ELECtroencephalography(脑电图),捕捉电生理活动在脑中具有高时间分辨率,是用于研究内源性和夹带的振荡神经活动的理想选择。通过赫尔弗里希和最近的研究同事报道TACS在线神经生理的影响,但在同一时间在TACS测量EEG已经证明困难的,因为突出的TACS神器12,13。对于成功并发TACS脑电图实验,记录良好的品质脑电数据是一个重要方面,这是当前文章的重点,并在同一时间的预处理方法来去除TACS神器也至关重要。在我们的实验室,我们一直在开发我们自己的预处理流水线,允许从脑电数据29去除TACS神器。在这里,我们将介绍如何成功地从刺激的区域,技术因素对成功记录重要记录的EEG信号。
该步骤设置并发TACS脑电图实验说明。我们现在来讨论考虑了TACS-脑电图记录,其中前两个因素是成功并发TACS,脑电图记录重要的设置。
避免TACS脑电图电极通过凝胶桥
这是至关重要的,以避免通过泄漏脑电图凝胶EEG和TACS电极之间桥接,紧接桥接饱和脑电图放大器的各自的信道。由于这个原因,脑电图凝胶的粘度是成功TACS脑电图记录一个重要的参数。切勿使用液体脑电图凝胶,作为一种流体脑电图凝胶风险从TACS电极和桥梁与相邻的脑电图电极逃逸出来。同时,非常粘稠的脑电图凝胶具有在穿透头发和润滑皮肤,以减少阻抗是不利的。对于在TACS电极附近的脑电图电极,一个更具粘性凝胶bË使用,可以使用一个木棍,以降低阻抗。对于TACS和剩余脑电图电极,用略带粘性较低(但仍不能液)脑电图凝胶。这种类型的凝胶需要较少的努力来降低阻抗。因为难以在TACS电极下刮掉,最好是在这里使用稍微少粘性凝胶。
与TACS神器幅度处理
第二个问题是处理TACS神器的大幅度,从10毫伏的脑电图电极的刺激的区域较远,超过100毫伏的刺激0.9毫安当前刺激强度在现场( 图6) 图7示出刺激强度之间的线性关系(0.5至2.0 mA的峰-峰值)和所述假象的刺激(信道F3)站点所得数值。第一个措施是保持两个EEG和TACS电极的低阻抗。不足在TACS电极和头皮之间的接触将产生较大的TACS工件在脑电图数据的幅度,并且除了应用于电子电流将趋向于不均匀。其次,我们需要考虑的脑电系统的A / D转换器的分辨率级别。 24位A / D转换器理论上可以覆盖一定范围的1.68 V配合0.1μV/位的分辨率。相比之下,16位A / D转换器和一个0.1μV/位分辨率将涵盖6.5 mV的电压范围-过低覆盖TACS神器( 图6)的范围内。因此,电压记录分辨率需要降低。为了掩饰高达100毫伏工件幅度在刺激部位用16比特系统中,电压记录分辨率理论上需要以上1.53μV/比特被降低到。事实上最近并发TACS脑电图研究具有16位系统不能记录来自刺激位点附近的EEG信号由于AMPL的饱和 ifier即使当分辨率降低到0.5μV/位12,13。
注意事项减少电极阻抗
究其原因,首先开始工作在位于TACS电极中间或附近的脑电图电极的阻抗,是这些脑电图电极需要一定的耐心,细致的工作,以避免桥接。通过启动与这些电极,有时间要等到应用凝胶已经有一些时间来润滑头皮,才考虑采用更脑电图凝胶,如果必要的。附加凝胶应的TACS电极下应用,一旦它已经被放置在头皮上,特别是如果参与者都有很多头发。其原因不仅是减少阻抗 – 好的阻抗,可以实现没有这种步骤 – 但实现与头皮整个TACS电极的表面均匀的连接。
设计与蒙太奇的考虑
ntent“> 图1示出的TACS电极的蒙太奇。头皮TACS电极/电极的环状设计和矩形肩TACS电极被描绘。头皮TACS电极的形状允许脑电图电极被放置在受刺激区域的中间。的甜甜圈形设计的一个优点是,它允许从刺激区域中记录的信号。其次,它也可以很容易地保持TACS电极的位置不变。根据刺激的部位,在TACS电极的其他的形状会更适合。从网站的脑电图电极之间进行录制时,矩形TACS电极形状更适合。应当提醒,TACS电极的形状和位置是不一样的实际受到刺激的区域,但也可以稍微错开31。当决定TACS电极的电流f的位置,建模低估计电极的最佳位置用于靶向感兴趣区域总是强烈建议。
目前的设置是适合于有节奏的活动,在大型网络中的调制。多个协调刺激可以在几个方面13,32,33,34来实现。首先,降低了TACS电极的大小。 Nitsche和他的同事已经表明,一个3.5厘米2电极可调节运动皮层的兴奋性与TDCS 32。第二种方法是利用高清晰度配置13,33,34,其中一个激励电极由四个参考电极包围。高清晰度结构的另一优点是,EEG电极的密度可以增加,因为传统的橡胶电极限制的空间放置EEG电极和64 EEG电极未在当前的设置来实现是可行的。虽然日对于更高的空间特异性ESE的修改需要不同的设置过程,这里所描述的技术方面的考虑仍然适用。
在这个协议中,我们按照国际:10-20系统脑电图电极定位30放置TACS电极。刺激位置的Whileindividual优化将是替代方案中,不同的刺激位置,当在实验中个体间,作为刺激部位相对于所述脑电图记录点改变它可能构成一个问题进行比较。最近展示了结合使用脑磁图(MEG)和TACS的,由Neuling和他的同事35,可能会解决这个问题,TACS神器相关的问题,如空间滤波方法与MEG波束成形允许估计独立的一个TACS网站的大脑活动。
关于蒙太奇,二单极蒙太奇这里描述, 即与extracephali参考电极(图1B和1C),和一个单极蒙太奇, 即,与位于头皮(图1A)两个电极的Ç位置(见电极蒙太奇的进一步分类由纳塞等人36)。另外用单极蒙太奇的优点是避免不感兴趣的研究额外头侧刺激。当选择一个单极蒙太奇主要关注的是电流流动虽然皮质下结构,包括脑干,与调制重要脑干功能的潜在风险。参考电极的两个extracephalic和同侧肩安置已证实不调节脑干功能TDCS 37,38为1mA强度(例如,心脏心率变异性,呼吸速率和血压)。作为一个单极蒙太奇可以具有取决于实验设计明显的优点,有必要为全面测试期间更高的刺激强度和不同单极蒙太奇上重要脑干功能的影响,以及用于比较TDCS和TACS之间的影响力。
需要注意的是高清晰度的配置是用于避免不感兴趣额外头侧刺激双极蒙太奇的问题的另一个解决方案。与由四个参考电极包围一个激励电极的高清晰度的配置导致了四个周围电极下在中心电极和低电流密度下的高电流密度。作为刺激的效果取决于电流的密度,这意味着对于高清晰度的配置中心电极下的单向调制,而相比之下,两个电极结构39的双向调制。
视觉闪烁感知诱发TACS是放置TA时,一个关键的限制因素的刺激强度在额叶CS电极,因视网膜刺激总可捕量。特别是TACS在测试波段频率引起的视觉闪烁,即使在TACS 11的低强度。在我们的经验0.9毫安(峰 – 峰)刺激过DLPFC(F3电极)6赫兹是一个合适的强度电平,以尽量减少视觉闪烁的感觉。
根据实验的设计中,可能有必要,以控制与外部设备的刺激器(如果该功能是用于所使用的刺激物)。我们使用的波形的模拟输出板,以控制刺激器和发送触发器脑电图放大器(见进一步硬件和软件规范在材料表)。万一,这里使用(见表材料 )的刺激器的,电流输出用遥控器的噪声电平比与嵌入式刺激器接口更高。因此可以选择远程控制的刺激器应选择仅当需要通过实验设计。
脑电图通道故障排除饱和
我们已经表明,通过在饱和脑电图放大器的各自的信道泄漏脑电图凝胶结果TACS和EEG电极之间的桥接,并从这些电极(图5A)排除了记录数据。还有其它原因脑电图通道的饱和度。一个原因可能是该放大器的增益是太窄,且电压记录分辨率还未相应调整。在这种情况下,电压记录分辨率需要降低以覆盖TACS工件的幅度的范围内。另一个原因是,在记录部位过于接近的刺激部位。在这种情况下,即使是非常粗糙的电压记录分辨率可能仍然不能覆盖工件的范围。记录应位于进一步远离刺激位置。
目前的职业母育全面描绘了设置和技术方面的考虑并发TACS脑电图实验。使用方法的过程中TACS删除TACS神器和协议好品质录音,TACS将真正成为一个有前途的方法,进一步方便了我们的大脑活动,有节奏的动态变化的最突出的特点的理解。
The authors have nothing to disclose.
This project has been supported by the Japan Science and Technology Agency (JST) PRESTO program.
Stimulator for tACS: Eldith DC-Stimulator plus | NeuroConn GmbH, Germany | For remote input, be sure to order a model with this feature enabled | |
Analog Output board for sending triggers: Static and Waveform Analog Output board, model NI PCI-6723 | National Instruments, USA | 13-bit, 32 channels. | |
Matlab and data acquisition toolbox | The MathWorks, Inc., USA | The 'Data acquisition toolbox' available for MATLAB provides functions to control data acquisition hardware such as an analog output board, produced by several manufacturers. | |
EEG system: eegosports, with a 32 channel waveguard EEG cap | ANT neuro, Netherlands | ||
tACS electrodes | NeuroConn GmbH, Germany | 305090-05 305050 | Materials: conductive-rubber electrodes. Dimensions of scalp electrodes: Outer Ø: 60 mm, Inner Ø:25 mm (Part# 305090-05) Cut from the original size Ø 75mm Dimensions of shoulder electrode: 50 x 50 mm (Part# 305050) |
EEG gel | Inselspital, Bern, Switzerland | Electrode paste, containing abrasives (i.e. pumice) which scrub the skin, improving the electrode-to-skin contact. | |
Abrasive skin preparing gel for EEG and electrocardiography: Nuprep | Weaver and Company, USA | ||
Cotton swabs, wooden handle | Salzmann MEDICO, Switzerland | Dimensions: 150 x 1.5 mm; wooden handle Ø 2.2 mm |
|
Adhesive tape: Leukofix | BNS medical GmbH, Germany | 04.107.12 |