概要

Porphyromonas gingivalis como um organismo modelo para a Avaliação da Interação de bactérias anaeróbias com células do hospedeiro

Published: December 17, 2015
doi:

概要

This article presents two protocols: one to measure anaerobic bacteria that can successfully invade and survive within the host, and the other to visualize anaerobic bacteria interacting with host cells. This study can be applied to any cultivable anaerobe and any eukaryotic cell type.

Abstract

As bactérias anaeróbicas longe superam os aeróbios em muitos nichos humanos, tais como o intestino, boca e vagina. Além disso, infecções anaeróbias são comuns e frequentemente de origem indígena. A capacidade de alguns agentes patogénicos anaeróbios de invadir células humanas lhes dá as medidas de adaptação para escapar imunidade inata, bem como para modular o comportamento da célula hospedeira. No entanto, assegurar que as bactérias anaeróbias são vivo durante a investigação experimental dos eventos pode representar desafios. Porphyromonas gingivalis, um anaeróbio Gram-negativos, é capaz de invadir uma variedade de células não fagocíticas eucarióticas. Este artigo descreve como para com êxito a cultura e avaliar a capacidade do P. gingivalis de invadir células endoteliais da veia umbilical humana (HUVECs). Dois protocolos foram desenvolvidos: um para medir as bactérias que podem invadir e sobreviver com sucesso dentro do hospedeiro, e a outra para visualizar as bactérias que interagem com as células hospedeiras. Estas técnicas requerem a utilização de um anaecâmara para fornecer P. Robic gingivalis com um ambiente anaeróbico para o crescimento ideal.

O primeiro protocolo baseia-se no ensaio de protecção de antibiótico, que é largamente utilizada para estudar a invasão das células hospedeiras por bactérias. No entanto, o ensaio de protecção de antibiótico é limitada; apenas bactérias intracelulares que são cultiváveis ​​após o tratamento antibiótico e a lise da célula hospedeira são medidos. Para avaliar todas as bactérias interagem com células hospedeiras, tanto vivos e mortos, desenvolvemos um protocolo que utiliza a microscopia fluorescente para examinar interação patógeno-hospedeiro. As bactérias são marcado por fluorescência com 2 ', 7'-bis- (2-carboxietil) -5- (e-6) -carboxyfluorescein acetoximetil éster (BCECF-AM) e utilizados para infectar células eucarióticas em condições anaeróbias. Após fixação com paraformaldeído e permeabilização com 0,2% de Triton X-100, as células hospedeiras são marcados com TRITC-faloidina e DAPI para marcar o citoesqueleto da célula e do núcleo, respectivamente. Multiple images tomadas em diferentes pontos focais (Z-stack) são obtidos para visualização temporal e espacial das bactérias. Os métodos usados ​​neste estudo pode ser aplicada a qualquer bactéria anaeróbia cultiváveis ​​e qualquer tipo de célula eucariótica.

Introduction

As bactérias anaeróbicas colonizar quase todas as superfícies do corpo humano. Embora predominante na flora do trato intestinal e genito-urinário, onde as concentrações de oxigênio são baixos, eles também existem em níveis elevados na pele, boca, nariz e garganta 1. As bactérias anaeróbicas são uma causa comum de infecções endógenas e frequentemente são isoladas de sítios doentes. No entanto, devido à sua natureza fastidiosa, anaeróbios podem ser difíceis de isolar e cultivar. Estudos envolvendo bactérias anaeróbias deve ser feito sob condições restritas. Técnicas anaeróbio-cultura moderna permitem aos pesquisadores para imitar as configurações anaeróbias necessárias para estudar muitas cepas laboratoriais anaeróbia ou mesmo isolados clínicos 2,3.

Bactérias anaeróbicas patogénicas têm desenvolvido uma relação dinâmica e co-evolução com as células hospedeiras em que residem. A maioria dos anaeróbios são susceptíveis à morte pela resposta imunitária do hospedeiro antes de atingir infectiníveis OUs. No entanto, algumas bactérias patogénicas desenvolveram mecanismos para escapar ou subverter a resposta imune do hospedeiro. Eles alcançar este objetivo através de mecanismos como a evasão de reconhecimento imunológico, neutralização de mediadores do sistema imunológico, alteração de imunidade mediada por células, invasão de células hospedeiras, e alteração da imunológico sinalizando 4. Porphyromonas gingivalis, uma bactéria anaeróbia Gram-negativo implicado em ambos oral e doenças extra-orais, é um exemplo de um agente patogénico bacteriano altamente adaptado capaz de causar alterações patogénicas no hospedeiro 5-7.

Bolsões de biofilme placa acumulado em fendas profundas formadas entre os dentes e tecido da mucosa gengival pode abrigar bactérias anaeróbias que são protegidos de oxigênio atmosférico 8. Estas bolsas periodontais servir como um nicho para vários patógenos anaeróbicos, como P. gingivalis 9. P. gingivalis é um agente patogénico da distorção que é capaz de remodelaçãoing a comunidade microbiana oral, de forma a promover o desenvolvimento e progressão de doenças periodontais 10. Ela produz um grande número de fatores de virulência que são ativos contra um amplo espectro de proteínas do hospedeiro e fornece mecanismos para a evasão de defesas do hospedeiro 11. É também capaz de invadir epiteliais, endoteliais, fibroblastos e células do ligamento periodontal in vitro e in vivo 12-14 15. Por eficazmente invadir as células hospedeiras, P. gingivalis pode escapar imunidade do hospedeiro. Invasão efectiva de células hospedeiras não só permite que a bactéria de escapar defesas do hospedeiro, mas também serve como um reservatório para o futuro re-infecção, bem como a célula hospedeira altera. São necessários estudos dos mecanismos moleculares envolvidos na adesão e internalização da bactéria por células hospedeiras. Pesquisa em vários laboratórios está focada na compreensão dos eventos moleculares associados com a internalização de P. gingivalis pelas células hospedeirasbem como os mecanismos utilizados para suprimir e sequestrar a resposta imune e sobreviver a mecanismos de defesa do hospedeiro hostis.

Existem muitos ensaios capazes de identificar e caracterizar agentes patogénicos que são capazes de invadir as células hospedeiras. No entanto, estudos in vitro com agentes patogénicos anaeróbios apresentam muitos problemas experimentais para o investigador, principalmente porque é difícil realizar estudos que dependem de instrumentos volumosos, na ausência de oxigénio. Esta situação é agravada pelo fato de que as células eucarióticas necessitam de oxigênio para crescer e, portanto, deve ser preparado separadamente em incubadoras de cultura de tecidos. Uma maneira de evitar tais obstáculos seria realizar os estudos sob o oxigénio atmosférico, mas que iria tornar o crescimento de bactérias anaeróbicas impossível. Outro método seria a utilização de bactérias mortas por calor para infectar e estudar interacções célula-hospedeiro. No entanto, existem diferenças entre as bactérias mortas pelo calor e viáveis ​​que diminuem a relevância do interacti patógeno-hospedeirono dia 16. Ele é central para estudar bactérias viáveis ​​com expressão inalterada interagindo com células hospedeiras; Assim, os métodos para a cultura de P. gingivalis em um ambiente anaeróbico são dadas. Além disso, dois protocolos de baixo custo simples são demonstrados para avaliar a capacidade do P. gingivalis para ser internalizada pelas células endoteliais humanas da veia umbilical (HUVEC). O primeiro protocolo baseia-se no ensaio de protecção de antibiótico populares. Embora o ensaio é simples, as considerações ao usar microrganismos anaeróbios são dadas. O segundo protocolo requer a utilização de um microscópio de varrimento de fluorescência para visualizar a interagir e internalizado P. gingivalis. Cada ensaio tem as suas limitações e vantagens que serão discutidos para fornecer o pesquisador um esboço para estudar a invasão de bactérias anaeróbicas. Embora o manuscrito atual estuda P. gingivalis e HUVEC, estes protocolos podem ser utilizados para muitos outros tipos de bactérias anaeróbicas, bemcomo para outros tipos de células hospedeiras.

Protocol

Os seguintes protocolos vai descrever métodos para a cultura e estudar a invasão pelas espécies anaeróbicas, P. gingivalis; No entanto, estes protocolos podem ser utilizados para uma série de agentes patogénicos anaeróbios. Embora HUVECs são usados, este protocolo pode ser usado para outras células eucarióticas tanto imunes e não-imunes. 1. Anaerobic Chamber Uso e Manutenção Nota: P. gingivalis é um anaeróbio sensível aos …

Representative Results

Protocolos descritas acima foram usadas no estudo de interação patógeno-hospedeiro entre P. gingivalis e células endoteliais. P. gingivalis W83 e um P. gingivalis V3150 transportando uma deleção de PG0228 foram utilizados no estudo. O PG0228 está previsto para codificar uma proteína que podem alterar os níveis de RNA e proteínas, o que pode em última análise afectar a interacção de P. gingivalis com células hospedeiras. Para investigar o efeito da PG0228 em <em…

Discussion

Todos os métodos acima podem ser utilizados para conceber ensaios específicas para avaliar a interacção de bactérias anaeróbicas com células eucarióticas. No entanto, há várias considerações para realizar com sucesso experiências. Primeiro são as estirpes microbianas para ser utilizados num estudo.

É crucial para a comparação de duas estirpes com ambos o ensaio de sobrevivência, bem como por análise de microscopia de que eles estão em fases de crescimento semelhantes e at…

開示

The authors have nothing to disclose.

Acknowledgements

We would like to thank Dr. Hiroshi Miyazaki, Dr. Scott Henderson, Dr. Todd Kitten, Dr. Justin Hutcherson, Dr. Catherine Jauregui, and Collin R. Berry. This work was supported by NIH NIDCR grants R01DE016124, R01DE018039, and R01DE023304 to J.P. Lewis.

Microscopy was performed at the VCU Department of Anatomy and Neurobiology Microscopy Facility, supported, in part, with funding from NIH-NINDS Center core grant (5P30NS047463).

Materials

Vinyl Anaerobic Chamber-Type B Coy Laboratory Products Model 2000 incubator 
TSA II Trypticase Soy Agar w/5% Sheep Blood BBL 221261
Human Umbilical Vein Endothelial Cells 10-donor Pool LifeLine Technology FC-0044
VascuLife VEGF Medium Complete Kit LifeLine Technology LL-0003
TrypKit LifeLine LL-0013
Saponin Riedel-de Haen 16109
Gentamicin Sulfate Salt Sigma-Aldrich G-1264
Metronidazole Sigma-Aldrich M-3761
BCECF-AM LifeTechnologies B1150
TRITC Phalloidin  Sigma-Aldrich P1951
18 mm Circular Coverslips Electron Microscopy Sciences 72222-01
VectaShield Mounting Medium with DAPI Vector Laboratories H-1200

参考文献

  1. Hentges, D. J. The Anaerobic Microflora of the Human Body. Clin. Infect. Dis. 16 (4), S175-S180 (1993).
  2. Willis, A. T. . Anaerobic bacteriology: clinical and laboratory practice. , (2014).
  3. Wren, M. W., Baldwin, A. W., Eldon, C. P., Sanderson, P. J. The anaerobic culture of clinical specimens: a 14-month study. J. Med. Microbiol. 10 (1), 49-61 (1977).
  4. Woolard, M. D., Frelinger, J. A. Outsmarting the host: bacteria modulating the immune response. Immunol. Res. 41 (3), 188-202 (2008).
  5. Mayrand, D., Holt, S. C. Biology of asaccharolytic black-pigmented Bacteroides species. Microbiol. Rev. 52 (1), 134-152 (1988).
  6. Lamont, R. J., Jenkinson, H. F. Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol. Mol. Biol. Rev. 62 (4), 1244-1263 (1998).
  7. Haffajee, A. D., Socransky, S. S. Microbial etiological agents of destructive periodontal diseases. Periodontol. 2000. 5 (1), 78-111 (1994).
  8. Listgarten, M. A. Structure of the microbial flora associated with periodontal health and disease in man. A light and electron microscopic study. J. Periodontol. 47 (1), 1-18 (1976).
  9. Ximénez-Fyvie, L. A., Haffajee, A. D., Socransky, S. S. Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis. J. Clin. Periodontol. 27 (9), 648-657 (2000).
  10. Darveau, R. P., Hajishengallis, G., Curtis, M. A. Porphyromonas gingivalis as a potential community activist for disease. J. Dent. Res. 91 (9), 816-820 (2012).
  11. Holt, S. C., Kesavalu, L., Walker, S., Genco, C. A. Virulence factors of Porphyromonas gingivalis. Periodontol. 2000. 20 (1), 168-238 (1999).
  12. Lamont, R. J., Yilmaz, &. #. 2. 4. 6. ;. Z. In or out: the invasiveness of oral bacteria. Periodontol. 2000. 30 (1), 61-69 (2002).
  13. Lamont, R. J., et al. Porphyromonas gingivalis invasion of gingival epithelial cells. Infect. Immun. 63 (10), 3878-3885 (1995).
  14. Belton, C. M., Izutsu, K. T., Goodwin, P. C., Park, Y., Lamont, R. J. Fluorescence image analysis of the association between Porphyromonas gingivalis and gingival epithelial cells. Cell. Microbiol. 1 (3), 215-223 (1999).
  15. Rautemaa, R., et al. Intracellular localization of Porphyromonas gingivalis thiol proteinase in periodontal tissues of chronic periodontitis patients. Oral Dis. 10 (5), 298-305 (2004).
  16. Kaufmann, S. H. Immunity to intracellular bacteria. Annu. Rev. Immunol. 11 (1), 129-163 (1993).
  17. Diaz, P., Rogers, A. The effect of oxygen on the growth and physiology of Porphyromonas gingivalis. Oral Microbiol. Immunol. 19 (2), 88-94 (2004).
  18. Lewis, J. P., Iyer, D., Anaya-Bergman, C. Adaptation of Porphyromonas gingivalis to microaerophilic conditions involves increased consumption of formate and reduced utilization of lactate. 微生物学. 155, 3758-3774 (2009).
  19. Edwards, A. N., Suarez, J. M., McBride, S. M. Culturing and maintaining Clostridium difficile in an anaerobic environment. J. Vis. Exp. (79), e50787 (2013).
  20. Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. , (2001).
  21. Koch, A. L., Crandall, M. Photometric measurement of bacterial growth. The American Biology Teacher. 30 (6), 481-485 (1968).
  22. Wikins, T. D., Holdeman, L. V., Abramson, I. J., Moore, W. E. Standardized single-disc method for antibiotic susceptibility testing of anaerobic bacteria Antimicrob. Agents Chemother. 1 (6), 451-459 (1972).
  23. Bauer, A. W., Kirby, W. M., Sherris, J. C., Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45 (4), 493-496 (1966).
  24. Mandell, G. L. Interaction of intraleukocytic bacteria and antibiotics. J. Clin. Invest. 52 (7), 1673-1679 (1973).
  25. Menzies, B. E., Kourteva, I. Internalization of Staphylococcus aureus by endothelial cells induces apoptosis. Infect. Immun. 66 (12), 5994-5998 (1998).
  26. Naito, M., et al. Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA Res. 15 (4), 215-225 (2008).
  27. Goebel, W., Kuhn, M. Bacterial replication in the host cell cytosol. Curr. Opin. Microbiol. 3 (1), 49-53 (2000).
  28. Gospodarowicz, D. C. Extracellular matrix and control of proliferation of vascular endothelial cells. J. Clin. Invest. 65 (6), 1351-1364 (1980).
  29. DeQuach, J. A., et al. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PloS One. 5 (9), e13039 (2010).
  30. Sellers, J. R., Cook, S., Goldmacher, V. S. A cytotoxicity assay utilizing a fluorescent dye that determines accurate surviving fractions of cells. J. Immunol. Methods. 172 (2), 255-264 (1994).
  31. Van Veen, H. W., et al. Generation of a proton motive force by the excretion of metal-phosphate in the polyphosphate-accumulating Acinetobacter johnsonii strain 210A. J. Biol. Chem. 269 (47), 29509-29514 (1994).
  32. Jackson, V. N., Halestrap, A. P. The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein. J. Biol. Chem. 271 (2), 861-868 (1996).
  33. He, J., et al. Role of Porphyromonas gingivalis FeoB2 in metal uptake and oxidative stress protection. Infect. Immun. 74 (7), 4214-4223 (2006).
  34. Anaya-Bergman, C., et al. Porphyromonas gingivalis ferrous iron transporter FeoB1 influences sensitivity to oxidative stress. Infect. Immun. 78 (2), 688-696 (2010).
  35. Ueshima, J., et al. Purification, gene cloning, gene expression, and mutants of Dps from the obligate anaerobe Porphyromonas gingivalis. Infect. Immun. 71 (3), 1170-1178 (2003).
  36. Johnson, M. B., Criss, A. K. Fluorescence microscopy methods for determining the viability of bacteria in association with mammalian cells. JoVE. (79), (2013).
  37. Cordes, T., Maiser, A., Steinhauer, C., Schermelleh, L., Tinnefeld, P. Mechanisms and advancement of antifading agents for fluorescence microscopy and single-molecule spectroscopy. Physical Chemistry Chemical Physics. 13 (14), 6699-6709 (2011).
  38. Pawley, J. . Handbook of biological confocal microscopy. , (2010).
  39. Gursoy, U., Könönen, E., Uitto, V. Prevotella intermedia ATCC 25611 targets host cell lamellipodia in epithelial cell adhesion and invasion. Oral Microbiol. Immunol. 24 (4), 304-309 (2009).
  40. Sengupta, D., et al. Interaction of Prevotella intermedia strain 17 leucine-rich repeat domain protein AdpF with eukaryotic cells promotes bacterial internalization. Infect. Immun. 82 (6), 2637-2648 (2014).
  41. Reyes, L., Herrera, D., Kozarov, E., Roldán, S., Progulske-Fox, A. Periodontal bacterial invasion and infection: contribution to atherosclerotic pathology. J. Clin. Periodontol. 40, S30-S50 (2013).
  42. Grant, M. M., et al. Oxygen tension modulates the cytokine response of oral epithelium to periodontal bacteria. J. Clin. Periodontol. 37 (12), 1039-1048 (2010).
  43. Biedermann, A., Kriebel, K., Kreikemeyer, B., Lang, H. Interactions of Anaerobic Bacteria with Dental Stem Cells: An In Vitro Study. PloS One. 9 (11), e110616 (2014).
  44. Kriebel, K., Biedermann, A., Kreikemeyer, B., Lang, H. Anaerobic Co-Culture of Mesenchymal Stem Cells and Anaerobic Pathogens-A New In Vitro Model System. PloS One. 8 (11), e78226 (2013).
  45. Peyyala, R., Kirakodu, S. S., Novak, K. F., Ebersole, J. L. Oral microbial biofilm stimulation of epithelial cell responses. Cytokine. 58 (1), 65-72 (2012).
  46. Halldorsson, S., Lucumi, E., Gòmez-Sjöberg, R., Fleming, R. M. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectro. 63, 218-231 (2015).
  47. Iyer, D., et al. AdpC is a Prevotella intermedia 17 leucine-rich repeat internalin-like protein. Infect. Immun. 78 (6), 2385-2396 (2010).

Play Video

記事を引用
Wunsch, C. M., Lewis, J. P. Porphyromonas gingivalis as a Model Organism for Assessing Interaction of Anaerobic Bacteria with Host Cells. J. Vis. Exp. (106), e53408, doi:10.3791/53408 (2015).

View Video