Phagosomal pH influences phagosome maturation, oxidant production, phagosomal killing as well as antigen presentation. Here we describe a ratiometric method for measuring time-course and endpoint pH changes in individual phagosomes in living phagocytes using fluorescence microscopy.
A fagocitose é um processo fundamental através do qual as células imunes inatas engolir bactérias, células apoptóticas ou de outras partículas estranhas, a fim de matar ou neutralizar o material ingerido, ou apresentá-lo como antigénios e iniciar respostas imunes adaptativas. O pH de fagossomas é um parâmetro crítico de fissão regulação ou fusão com endomembranas e activação de enzimas proteolíticas, eventos que permitem que o vacúolo fagocítica de amadurecer em um organelo degradativa. Além disso, a translocação de H + é necessária para a produção de níveis elevados de espécies reactivas de oxigénio (ROS), as quais são essenciais para a morte eficiente e de sinalização a outros tecidos do hospedeiro. Muitos patógenos intracelulares subverter assassinato phagocytic limitando phagosomal acidificação, destacando a importância do pH em biologia phagosome. Descrevemos aqui um método para a medição raciométrica phagosomal pH em neutrófilos usando isotiocianato de fluoresceína (ITCF) marcado com zimosano como fagocítica targets e geração de imagens de células vivas. O ensaio baseia-se nas propriedades de fluorescência do FITC, que é extinta por pH acídico, quando excitado a 490 nm, mas não quando excitado a 440 nm, permitindo a quantificação de uma relação dependente do pH, em vez de fluorescência absoluta, de um único corante. Um protocolo detalhado para a realização do corante calibração in situ e a conversão de relação a valores de pH verdadeiro também é fornecido. -Dye único raciométrica métodos são geralmente considerado superior ao comprimento de onda único ou protocolos pseudo-ratiometric dual-dye, como eles são menos sensíveis a perturbações tais como o branqueamento, o foco alterações, variações laser e rotulagem irregular, que distorcem o sinal medido. Este método pode ser facilmente modificado para medir o pH em outros tipos de células fagocíticas, e zymosan pode ser substituído por qualquer outra partícula contendo amina, a partir de drageias inertes para os microorganismos vivos. Finalmente, este método pode ser adaptada para fazer uso de outras sondas fluorescentes sensíveis a diferentes gamas de pH ou outro phagosomatividades de al, tornando-se um protocolo generalizado para a imagiologia funcional de phagosomes.
Phagocytosis, the process through which innate immune cells engulf large particles, evolved from the eating mechanism of single-celled organisms, and involves binding to a target, enveloping it with a membrane and pinching the membrane off to form a vacuole within the cytosol called a phagosome. While the phagosomal membrane is derived from the plasma membrane, active protein and lipid sorting, as well as fusion with endomembranes during phagosome formation, transform the phagosome into a distinct organelle within the cell with degradative properties that allow the killing, neutralization and breakdown of the ingested material1-3. This process, called phagosomal maturation, relies on the delivery of a host of proteolytic and microbicidal enzymes, including the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase which transfers electrons into phagosomes producing the strong oxidant O2– and its derivative reactive oxygen species (ROS) 2,4.
The luminal pH of phagosomes has a profound influence on several events required for phagosome function. First, pH influences trafficking of endomembranes in general, as pH-dependent conformational changes of transmembrane trafficking regulators alters the recruitment of trafficking determinants such as Arfs, Rabs and vesicular coat-proteins, which in turn define which vesicles may fuse with phagosomes 5-8. Second, the ionic composition of the phagosomal lumen is also transformed as phagosomes mature, and some ion transporters, such as the Na+/H+ exchanger or ClC family Cl–/H+ antiporters, which promote phagocytic function, rely on H+ translocation 9,10. Similarly, ROS production is intimately linked with phagosomal pH. ROS and its toxic oxidant byproducts have long been recognized as crucial for phagosomal killing in neutrophils 4,11,12, and have been shown to play critical roles in other phagocytes including macrophages, dendritic cells (DCs) and amoeba 13-16. The NADPH oxidase is an electrogenic enzyme that releases H+ in the cytosol as NADPH is consumed, and that requires the simultaneous transfer of H+ through companion HVCN1 channels alongside the transported electrons into the phagosomal lumen, in order to alleviate the massive depolarization that would otherwise lead to self-inhibition of the enzyme 17-21. Finally, several proteolytic enzymes have optimal activity at different pH, so time-dependent phagosomal pH changes can influence which enzymes are active and when. The importance of phagosomal pH is highlighted by organisms such as Mycobacterium tuberculosis, Franciscella tularensis and Salmonella typherium that subvert phagocytic killing at least in part by altering phagosomal pH 22-24.
In mammals the main phagocytes are neutrophils, macrophages and dendritic cells, and depending on cell type, time-dependent phagosomal pH changes can vary widely, and appear to play different roles. In macrophages a strong and rapid acidification mediated by the ATP-dependent proton pump vacuolar ATPase (V-ATPase) is one of the key factors mediating killing 25-27, resembling the mechanisms present in amoeba that use phagocytosis as an eating mechanism 28. In these cells activation of acidic proteases is thought to play a key role. In contrast, neutrophil killing relies more on ROS as well as HOCl produced by myeloperoxidase (MPO)11, and the pH remains neutral or alkaline during the first 30 min acidifying only later 29,30. Neutral pH has been suggested to favor the activity of oxidative proteases such as certain cathepsins. In DCs phagosomal pH is controversial, with some reporting acidification and others neutral or alkaline pH 31,32, but ROS and pH may profoundly influence the ability of these cells to present antigens to T cells, one of their main functions 33.
Importantly, hormones, chemokines and cytokines may produce signaling events that induce maturation and changes in phagocyte behavior, and in turn influence phagosomal pH 34,35. Similarly, drugs, for example the antimalarial chloroquine, which is also considered for anti-cancer therapies 36, may affect phagosomal pH and therefore immune outcomes. Thus, a variety of cell biologists, immunologists, microbiologists and drug developers may be interested in measuring phagosomal pH when seeking to understand the mechanisms underlying the effects of a particular genetic disruption, bioactive compound or microorganism on innate and adaptive immune responses.
Here we describe a method for measuring phagosomal pH in neutrophils that allowed us to show the importance of the HVCN1 channel in regulating neutrophil phagosomal pH 19. The method is based on the ratiometric property of fluorescein isothiocyanate (FITC) whose fluorescence emission at 535 nm is pH sensitive when excited at 490 nm but not 440 nm 37. When this dye is chemically coupled to a target, in this case zymosan, it can be followed using wide-field fluorescence microscopy, where cells are imaged as they phagocytose, and phagosomal pH changes are measured in real time as the phagosome matures. The actual pH is then gleaned by performing a calibration experiment where cells that have phagocytosed are exposed to solutions of different pH that contain the ionophores nigericin and monensin, that allow the rapid equilibration of the pH within phagosomes with the external solution. Ratio values are then compared to the known pH of solutions, a calibration curve is constructed by nonlinear regression and the resulting equation used to calculate pH from the ratio value.
Apesar de ser mais demorada do que os métodos alternativos, tais como a espectroscopia e FACS, que empregam uma estratégia semelhante de um corante utilizando sensível ao pH acoplado a alvos mas medir o pH médio de uma população de fagossomas, microscopia oferece várias vantagens. Primeiro é que interno e externo ligado, mas não internalizadas, as partículas podem facilmente ser distinguidos sem ter que adicionar outros produtos químicos, tais como azul de tripano ou anticorpos, para extinguir ou rotular part…
The authors have nothing to disclose.
The authors are financially supported by the Swiss National Science Foundation through an operating grant N° 31003A-149566 (to N.D.), and The Sir Jules Thorn Charitable Overseas Trust through a Young Investigator Subsidy (to P.N.).
Zymosan A powder | Sigma-Aldrich | Z4250 | Various providers exist |
Fluorescein isothiocyanate | Sigma-Aldrich | F7250 | Various providers exist |
Anti-zymosan antibody (Zymosan A Bioparticles opsonizing reagent) | Life Technologies | Z2850 | Sigma-Aldrich O6637 is an equivalent product. Alternatively 25% serum can be used as an opsonizing reagent. |
4-Aminobenzoic hydrazide (4-ABH) | Santa Cruz | sc-204107 | Toxic, use gloves, various providers exist |
Diphenyleneiodonium chloride (DPI) | Sigma-Aldrich | D2926 | Toxic, use gloves, various providers exist |
Concanamycin A (ConcA) | Sigma-Aldrich | 27689 | Toxic, use gloves, various providers exist |
Nigericin | Sigma-Aldrich | N7143 | Toxic, use gloves, various providers exist |
Monensin | Enzo | ALX-380-026-G001 | Toxic, use gloves, various providers exist |
Phosphate buffered saline (PBS) | Life Technologies | 14200-075 | Various providers exist |
Hank's balance salt solution | Life Technologies | 14025092 | Ringer's balanced salt solution or other clear physiological buffers may be substituted. |
Sodium carbonate (Na2CO3) | Sigma-Aldrich | S7795 | Various providers exist |
2-(N-Morpholino)ethanesulfonic acid (MES) | Sigma-Aldrich | M3671 | Various providers exist |
4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) | Sigma-Aldrich | H3375 | Various providers exist |
N-Methyl-D-glucamine (NMDG) | Sigma-Aldrich | M2004 | Various providers exist |
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) | Sigma-Aldrich | 3777 | Various providers exist |
Tris(hydroxymethyl)aminomethane (Tris) | Sigma-Aldrich | T1503 | Various providers exist |
Potassium chloride (KCl) | Sigma-Aldrich | P9333 | Various providers exist |
Sodium chloride (NaCl) | Sigma-Aldrich | S7653 | Various providers exist |
Magnesium chloride (MgCl2) | Sigma-Aldrich | M8266 | Various providers exist |
Absolute Ethanol (EtOH) | Sigma-Aldrich | 2860 | Various providers exist |
Glass-bottom 35 mm petri dishes (Fluorodish) | World Precision Instruments | FD35-100 | Ibidi µ-clear dishes or coverslips with appropriate imaging chambers may be sustituted |
Sonicating water bath | O. Kleiner AG | A sonicator may be used instead, various instrument providers exist | |
Heamocytometer | Marienfeld GmbH | Various instrument providers exist | |
Widefield live imaging microscope | Carl Zeiss AG | Various instrument providers exist, but the microscope must be able to image 440/535 and 490/535 excitation/emission respective. Spinning disk confocal set-ups with brightfield capabilities may substituted, but zymosan tend to go out of focus more often. | |
Peristaltic pump (Dynamax RP-1) | Rainin | Various instrument providers exist | |
pH meter | Schott Gerate GmbH | Various instrument providers exist | |
Manual Counter | Milian SA | Various instrument providers exist |