We demonstrate the fabrication, calibration and properties of two types of ion-selective microelectrodes (double-barreled and concentric) for measurement of ion concentrations in brain tissue. These are then used in the mouse hippocampal slice preparation to show that excitatory activity changes both extracellular potassium and sodium concentrations.
Electrical activity in the brain is accompanied by significant ion fluxes across membranes, resulting in complex changes in the extracellular concentration of all major ions. As these ion shifts bear significant functional consequences, their quantitative determination is often required to understand the function and dysfunction of neural networks under physiological and pathophysiological conditions. In the present study, we demonstrate the fabrication and calibration of double-barreled ion-selective microelectrodes, which have proven to be excellent tools for such measurements in brain tissue. Moreover, so-called “concentric” ion-selective microelectrodes are also described, which, based on their different design, offer a far better temporal resolution of fast ion changes. We then show how these electrodes can be employed in acute brain slice preparations of the mouse hippocampus. Using double-barreled, potassium-selective microelectrodes, changes in the extracellular potassium concentration ([K+]o) in response to exogenous application of glutamate receptor agonists or during epileptiform activity are demonstrated. Furthermore, we illustrate the response characteristics of sodium-sensitive, double-barreled and concentric electrodes and compare their detection of changes in the extracellular sodium concentration ([Na+]o) evoked by bath or pressure application of drugs. These measurements show that while response amplitudes are similar, the concentric sodium microelectrodes display a superior signal-to-noise ratio and response time as compared to the double-barreled design. Generally, the demonstrated procedures will be easily transferable to measurement of other ions species, including pH or calcium, and will also be applicable to other preparations.
Electrical signaling in the brain is based on the flux of ions across plasma membranes. Major ion movements into and from the extracellular space are not only mediated by passage through voltage-gated ion channels, but also by postsynaptic ionotropic receptors as well as ion transporters. Neuronal activity is thus accompanied by complex changes in the extracellular concentration of all major ions 1. For example, influx of sodium into neurons during excitatory activity has been shown to result in a decrease in the extracellular sodium concentration ([Na+]o) 2. The same holds true for the extracellular calcium concentration because calcium ions rapidly enter both pre- and postsynaptic structures 3. At the same time, potassium moves the opposite way and this mediates an increase in the extracellular potassium concentration ([K+]o) in the low mM range 4,5. Synaptic activity also causes changes in extracellular pH that are partly mitigated by concomitant glial membrane fluxes that change intraglial pH 6,7. These activity-related changes in extracellular ion concentrations have significant functional consequences. For example, even small increases in [K+]o depolarize neurons as well as glial cells thereby altering neuronal excitability, and several mechanisms exist to remove excess potassium 8. Failure of these may result in epileptiform activity of neurons or phenomena like spreading depression 1.
Because of their critical importance, quantitative determination of extracellular ion concentrations is often necessary and required to understand the function and dysfunction of neural networks under physiological and pathophysiological conditions. For decades, double-barreled ion-selective microelectrodes have proven to be excellent tools for such measurements in brain tissue 9. For many ions, highly specific sensors with low cross-reactivity for other ions are available. In addition to the classical double-barreled electrodes, so-called concentric electrodes were recently introduced. The latter provide a superior time resolution, but take a little more time and effort to construct 10.
In the following, we will describe the preparation and calibration of these two types of ion-selective microelectrodes. We then show how these electrodes can be employed in brain slice preparations for measurement of changes in [K+]o or [Na+]o induced by excitatory activity following different stimulation paradigms including bath and pressure application of drugs.
液舰载,离子选择性电极已被成功地使用了几十年,对许多离子,高度特异性的传感器可用22-26。当在脊椎动物脑制剂外空间(ECS)中使用,必须牢记,然而,这是一个相当侵入性技术:当ECS的宽度大约只有20-50纳米,直径离子选择性微电极约1微米(双管电极)或更大(同心电极)。的离子选择性微电极的前端将因此不仅在组织的其穿刺期间损伤组织,而且还扩大了ECS,有利于离子瞬变的低估。尽管有这些缺陷,响应于神经元活性细胞外离子瞬变不同实验室7,8,证明该方法的可靠性之间非常一致。
的离子选择性电极的性能和适用性取决于他们的灵敏度和选择性,这是由所用的传感器的鸡尾酒('液膜离子载体“)中所定义。传感器鸡尾酒含有一种特殊载体分子,例如缬氨霉素为K +选择性微电极显示高选择性钾27。尽管如此,交叉反应性的其它离子,可能会发生,并且必须进行测试。缬氨霉素表现出显著交叉反应性为铵,其具有解释结果时,需要考虑(例如11,12)。此外,由于离子载体的电压 – 响应遵循能斯脱行为(参见等式1),所述信噪比和检测阈值依赖于离子的浓度进行测量。因此,尽管小[K +] 0瞬变唤起对低基线K + 0,小[Na +]为大的电压变化Ø瞬变更难检测对喜GH基线[Na +]为O( 参见图5和6)。
的离子选择性电极的性能也由时间分辨率,这在很大程度上是由它的电气时间常数支配确定。后者主要由传感器的轴向阻力来确定,并通过沿所述吸移管的长度的分布电容,其内部的解决方案与外部流体之间。在双管结构中,电阻高,由于回填离子传感器的长列。对于给定的绝缘电介质(在这种情况下,硼硅玻璃),该电容由电介质厚度决定。在双管的电极,在电介质宽度达移液管的玻璃墙。作为玻璃变薄接近尖端,电介质宽度下降,电容增大。这些因素结合起来,以产生具有响应时间电极,范围从几百毫秒到几秒,因为这些因素是多种多样的。
同心设计的一个主要优点是,无论是轴向电阻和电容,以浴都大大减少。同心吸管分流大部分的回填离子交换剂的阻力,而使在顶端之前的最后几微米只残余。此外,同心吸管内的填充液在物理上从浴隔开,由两个玻璃墙的厚度隔开,大大减少了电容。如前面所示10,降低的电阻和电容的共同影响是在两个数量级的时间分辨率的提高。在同心的 Ca 2+和pH微电极的情况下,90%的响应时间分别为低10-20毫秒10。同心设计的一个相关的优点是较低的噪声电平(参看图8)。从任何安眠药由于大大降低了电阻,电压瞬变T个噪声最小化。此外,从这些瞬态恢复是因为快速的时间常数迅速。这些文物是因此小而快,对生理记录(参见图8)不太破坏性影响。
也有同心技术的缺点。首先,它们的装配是较复杂的,并且费时。第二个缺点是需要放置一个单独的参考微电极以其尖端,将会导致使用的任一单独的显微或专用双操纵器。最后,双管的微电极可以扩展到一三管设计,允许检测两种不同的离子种的同时28,这是不可能的同心电极。
最常见的陷阱
低效的硅烷化。
最重要的一步,并且在任何液体SENS制造主要障碍或基于离子选择性微电极是硅烷化过程。当电极不能响应的变化特定离子浓度,或与子能斯特响应(每10倍浓度差即井小于58毫伏)反应,硅烷化的疗效差是通常的原因。根据我们的经验,这可能,如果发生大气湿度过高或过低,一般的条件夏天,还是冬天的高度分别。如果可行施加过室内湿度一定的控制,这些问题可以克服。
电极电阻过高。
如果需要的话,在离子敏感圆筒的阻力可以通过斜削降低。为此,揭露其尖端的磨料悬浮在水中的几秒钟强大的喷射。这将导致其至上尖折断,降低到所期望的值的电阻。
盐桥。
盐的离子和参考桶之间的桥梁造成不良或无响应的电极,因此可以也大大变乱他们在校准性能。如上所述(见点1.6),这主要是在双管玻璃THETA选择的问题,而是一种罕见的发生使用此处描述的偏移,扭曲桶技术时。
轻松制作的初衷,往往可以有利地使用力士29的原双管设计。这种方法利用预填的离子和参考桶与盐溶液,一个快速曝光到由从前端吸气和驱逐硅烷溶液,通过离子交换剂掺入以下,也通过所述尖端(见30,31) 。这些电极可以制造在约10分钟,但它们的针尖大小一般为4微米或更多,他们更容易的实验过程中失败。与此相反,硅烷化的方法涉及暴露于硅烷蒸汽和热荷兰国际集团可以生产出更小的技巧,最后几天,有时几周电极。
综合起来,有几个协议和关于如何准备离子选择性微电极的方法。在这里,我们已经描述了两个主要程序的扭曲这在我们的实验室工作良好,可靠的双管以及同心微电极制造中,以接近100%的成功率。重要的是,这些技术将是转移到其他离子物种,包括pH或钙的测量,也将适用于其他制剂比脑,包括在一般流体填充腔或流体。最后,但并非最不重要,离子选择性微电极能够确定细胞内的离子浓度。因为它们的相对大的针尖大小(〜1微米)的,这将然而,很可能只在细胞与大细胞体,例如如在无脊椎动物制剂28,32找到。
The authors have nothing to disclose.
作者感谢C.罗德利哥专家技术援助。我们感谢S.·克勒(高级影像中心,海涅大学杜塞尔多夫),用于视频制作的帮助。研究作者的实验室已经由德国研究协会(DFG:罗2327 / 8-1到CRR)时,海涅大学杜塞尔多夫(以NH)和美国国立卫生研究院授予R01NS032123(以MC)。
Abrasive | MicroPolish | Buehler GmbH | Dissolved in A.dest |
Borosilicate-glass capillaries | 1405059 | Hilgenberg | Application pipette; 75 mm x 2 mm, wall thickness 0.3 mm |
Borosilicate glass capillaries with filament | GC 150 F-15 | Clark Electromedical Instruments, Harvard Apparatus | For the sensor of double-barreled microelectrodes |
Borosilicate glass capillaries with filament | GC100-F-15 | Clark Electromedical Instruments, Harvard Apparatus | For the reference of double-barreled microelectrodes |
Borosilicate glass capillaries with filament | GB-200TF-15 | Science Products | Concentric, outer channel. o.d. 2.0 mm |
Borosilicate glass capillaries with filament | GB-120TF-10 | Science Products | Concentric, inner channel. o.d. 1.2 mm |
Digidata | 1322A | Axon Instruments | |
Electrometer amplifier with headstage | Custom-made | Rin = 10TΩ and Ibias=50fA-1pA (commercially available alternatives: e. g. Dagan IX2-700, with headstage (10 Gig feedback resistor) or EPMS-07, NPI, Tamm, Germany) | |
Experimental chamber | Custom-made | Commercially available from e.g. Warner Instruments,USA; Scientifica, UK | |
Furnace | Heraeus | Must stay constant at 200°C | |
Hard sticky wax / dental wax | Deiberit 502 | Siladent Dr. Boehme & Schoeps GmbH | |
Hot plate | Custom-made | Must stay constant at 40°C | |
Microelectrodes holder made of plexiglas | Custom-made | Double-barreled: o.d. capillaries 1.5 mm, concentric: o.d. capillaries 2 mm | |
Micromanipulator | Leitz | ||
Micromanipulator | MD4R | Leica | |
Stereo microscope | M205C | Leica | |
Objective | Plan 0.8xLWD | Leica | |
Pipette puller | Model PP-830 | Narishige | Concentric microelectrodes |
Pipette puller | Model P-97 | Sutter Instruments | Sensor of concentric microelectrodes |
Pneumatic drug ejection system | Picospritzter Type II | General Valve TM Corporation | |
Travel dovetail stage | DT 25/M | Thorlabs | |
Two-component glue | Araldite | Huntsman advanced materials GmbH | One may also use a small stripe of aluminum foil to stick the capillaries together |
Silverwire | 99.9% | Wieland Edelmetalle | |
Slicer / Vibratome | Microm HM 650 V | Thermo Scientific | |
Software | AxoScope 8.1 | Axon Instruments | |
Vertical puller | Type PE-2 | Narishige Scientific Instruments | With a revolvable chuck for double-barreled microelectrodes |
x/y translational stage | Custom-made | ||
Name of Compound | Company | Catalog Number | Comments/Description |
1(S),9(R)-(−)-Bicuculline methiodide | Sigma aldrich | 14343 | Competitive antagonist of GABAA receptors (light-sensitive); CAUTION toxic |
CNQX | Sigma aldrich | C-127 | AMPA/kainate receptor antagonist; CAUTION toxic |
Dimethyl sulfoxide (DMSO) | Sigma aldrich | D5879 | |
DL-AP5 | Alfa Aesar | J64210 | NMDA receptor antagonist; CAUTION toxic |
Hexamethyldisilazane (HMDS) | Sigma aldrich | 440191 | CAUTION: Flammable, acute toxicity (oral, dermal, inhalation) and corrosive to metals and skin |
L-Aspartic acid | Sigma aldrich | A9256 | Activates NMDA and non-NMDA and EAATs |
L-Glutamic acid monosodium salt hydrate | Sigma aldrich | G1626 | Activates NMDA-R, AMPA-R, QA-R and KA-R), mGluRs and EAATs |
Potassium ionophore I – cocktail B | Fluka | 60403 | Based on valinomycin; CAUTION toxic |
Sodium ionophore II – cocktail A | Fluka | 71178 | Based on ETH 157 |
TTX | Ascent Scientific | Asc-055 | Inhibitor of voltage-dependent Na+ channels; CAUTION toxic |
Water, ultra pure | Sigma aldrich | W3500 |