This protocol presents a method for creating a large unilateral craniotomy over the temporal and parietal regions of the mouse cerebral cortex. This is especially useful for real time imaging over an expansive area of a cortical hemisphere.
The craniotomy is a commonly performed procedure to expose the brain for in vivo experiments. In mouse research, most labs utilize a small craniotomy, typically 3 mm x 3 mm. This protocol introduces a method for creating a substantially larger 7 mm x 6 mm cranial window exposing most of a cerebral hemisphere over the mouse temporal and parietal cortices (e.g., bregma 2.5 – 4.5 mm, lateral 0 – 6 mm). To perform this surgery, the head must be tilted approximately 30° and much of the temporal muscle must be retracted. Due to the large amount of bone removal, this procedure is intended only for acute experiments with the animal anesthetized throughout the surgery and experiment.
The main advantage of this innovative large lateral cranial window is to provide simultaneous access to both medial and lateral areas of the cortex. This large unilateral cranial window can be used to study the neural dynamics between cells, as well as between different cortical areas by combining multi-electrode electrophysiological recordings, imaging of neuronal activity (e.g., intrinsic or extrinsic imaging), and optogenetic stimulation. Additionally, this large craniotomy also exposes a large area of cortical blood vessels, allowing for direct manipulation of the lateral cortical vasculature.
The craniotomy is a standard procedure used by neuroscientists to reveal a portion of the brain. Since the dawn of electrophysiology, the craniotomy has allowed unprecedented breakthroughs in the field of neuroscience. Dense mapping of the cerebral cortex with electrodes has led to experiments testing hypotheses and theories based on these maps. We have recently entered a new era where the craniotomy is being utilized for in vivo imaging of cortical blood flow1,2,3 and neurovascular architecture4, enabling real time visualization of cortical activity within the exposed areas5,6,7. Although many studies use craniotomies combined with in vivo optical imaging techniques to study the structure and function of cortical neurons, glia, and cortical vasculature8,9, further investigations are limited by small areas of exposed cortex (but see10).
The purpose of this protocol is to provide a method for creating a large lateral craniotomy, exposing the cerebral cortex from the midline to the squamosal bone, and extending beyond bregma and lambda. This large craniotomy enables simultaneous viewing of the association cortices (retrosplenial, cingulate, and parietal), primary and secondary motor, somatosensory, visual, and the auditory cortex. This method has been previously coupled with voltage sensitive dye imaging (VSDI) to investigate how multiple cortical areas interact with one another during spontaneous and stimulus-induced cortical activity5,11,12. The most challenging aspects of this procedure include positioning the head of the animal, fixing the head plate, and avoiding hemorrhage while separating the temporal muscle from the parietal bone. Care must also be taken during the drilling and skull removal processes as the skull curves at an oblique angle.
The following protocol follows the University of Lethbridge Animal Care Committee (ACC) guidelines, and is conducted in accordance with the standards of the Canadian Council on Animal Care (CCAC).
1. Preparation
2. Removing the Skin and Retracting the Muscle from the Skull
3. Craniotomy
NOTE: The surgeon must remain diligent during removal of the skull and dura to avoid unnecessary complications. Troubleshooting steps are included should complications arise.
4. Dura Removal
NOTE: Dura removal requires extreme care and may take over 15 min.
5. Preparing Cranial Window
6. Euthanasia
NOTE: In our experience, this procedure takes experienced surgeons at least 3 – 4 practice surgeries to attain greater than 90% success rate. Less experienced surgeons may require even more practice. During the craniotomy or durotomy, the brain may sustain damage, such as if the drill punches through the bone into the brain. Some minor damage at the edge of craniotomy may be permissible. However, if the brain does not look "clean" with bright red undamaged blood vessels and white cortex, the experiment may need to be terminated. Examples of poor preparations include those with dead blood vessels, or when the cortex is marked with torn or damaged blood vessels. If any of these signs are present, the experiment will unlikely yield high quality data. Whether the surgery/experiment was successful or not, humanely euthanize the mouse at the completion of the experiment.
To study the interactions between cortical areas within a single hemisphere, we used a large craniotomy extending across the sagittal sinus and 5 – 6 mm lateral. This cranial window included primary (motor, somatosensory, visual, auditory), secondary (motor, visual), and association (retrosplenial, cingulate, parietal association) cortices of right brain hemispheres (Figure 3A). For this work we used voltage sensitive dye (VSD) imaging, which reflects changes in the membrane potential3. This protocol would also be useful for other extrinsic (e.g., calcium17 and glutamate18 imaging) or intrinsic imaging experiments. When stimulating the hindlimb, forelimb, whiskers, visual, or auditory system of lightly anesthetized mice using 0.5% isoflurane, we observed consensus patterns of cortical depolarization (Figure 3B). Consistent with previous studies5,19,20,21,22, we found that brief tactile stimulation of C2 barrel cortex led to activation of primary somatosensory areas, as well as "islands" of responses within functionally related areas. For example, the primary motor cortex (M1) or secondary representation of somatosensory cortex (S2; Figure 3Bi). A single 1 ms tone pip (25 kHz) stimulation led to the activation of primary auditory cortex (A1) approximately 20 ms after auditory stimulation (Figure 3Bii). Over the next few milliseconds, the depolarization spread across the auditory cortex and passed to neighboring secondary somatosensory cortex. Approximately 25 ms after tone onset, a secondary cortical depolarization would emerge, located 1.0 ± 0.2 mm medial and 1.9 ± 0.1 mm posterior relative to bregma (n = 9 mice). This is approximately the location of the parietal association area (ptA). The VSD signal then propagated to the midline area where other cortical association areas are located including retrosplenial (RS) and cingulate cortex (CG). Therefore, auditory stimulation led to the activation of two separate focal areas, from which traveling waves of VSD depolarization spread to a larger area within midline cortex. Focal stimulation of the contralateral eye with a 1 ms green LED pulse, led to activation of the primary visual cortex within 40 ms (Figure 3Bv). This primary activation of the visual cortex was followed by: (1) Spatial expansion of VSD depolarization into neighboring areas located medially, laterally, and anterior to the initial activated area; (2) Depolarization of a second medial cortical region approximately 50 ms after stimulation (n = 8 experiments) located along sagittal suture. This was similar to sensory stimulations of forelimb (Figure 3Biii), hindlimb (Figure 3Biv), C2 whisker, or audition. Evoked VSDI responses from sensory stimulation of the forelimb, hindlimb or audition initially activated the respective primary sensory cortices, followed by an anisotropic spread of activity, as well as midline activation of cortex around 20 – 40 ms after stimulation. This result was similar to responses from visual and whisker stimulation. The propagation of sensory-evoked activity along these midline routes and frequent activation of same regions by spontaneous activity6 may suggest that these regions are the central hub of the connection core of the mouse cortex, in which sensory information may integrate with spontaneous cortical activity.
Figure 1. Surgical Setup and Preparation. (A) Mouse head is shaved, cleansed, rotated approximately 30° for lateral exposure, and secured with the blunt end of ear bars. Isoflurane anesthetic is delivered via a nose piece and teeth holder. The mouse is covered with self adhesive plastic wrap for increased sterility and warmth. (B) Close-up showing skin and periosteum removed from the parietal skull plate, the temporal muscle is untouched. (C) The temporal muscle is removed exposing the temporal plate and squamosal bone, note the superficial vein is undamaged. (D) Prior to fixation, the head plate is positioned into the correct location with wax. Please click here to view a larger version of this figure.
Figure 2. Step-by-step Surgical Procedure. (A) The head-plate is attached to the skull with ethyl cyanoacrylate glue at the anterior and posterior locations. Note the location of bregma (black piece of triangular tape). (B) The cranial window is prepared by applying thickened dental cement between the head-plate and skull. Note that bregma and the squamosal landmarks remain visible. (C) Following drying of cement, brain buffer is added to soften the skull and to prevent adhesion of the dura. A rolled tissue will help removing brain buffer prior to drilling. (D) The edges of the craniotomy have been scored. Note the vasculature is more easily seen through the thinned bone near the dental cement edges. (E) The parietal and temporal skull plates have been removed and the dura is visible. Note blemishes of blood on the dura from minor bleeding, which is normal. Careful examination under 2 – 4X magnification will reveal two layers of blood vessels, one in the dura and the other in the pia. (F) The dura is removed revealing a pristine cortex. Pial vasculature is bright red with no blemishes present. Note the stray pieces of white colored dura at the edges of the cranial window. In this example, there was a minor dural bleed at the posterior portion of the cranial window, which quickly clotted. Please click here to view a larger version of this figure.
Figure 3. Unique and Consensus Activation Patterns during Multiple Forms of Sensory Stimulation. (A) Schematic of the unilateral craniotomy showing the imaged cortical regions. (B) Photomicrograph of the wide unilateral craniotomy with bregma indicated by a white circle in each image. Patterns of cortical activation are shown in a mouse anesthetized with isoflurane (0.5%) after (i) stimulation (stim) of the contralateral C2 whisker, (ii) auditory stimulation, (iii) contralateral forelimb stimulation, (iv) contralateral hindlimb stimulation and (v) visual stimulation of the contralateral eye with a light-emitting diode (LED). There was midline activation after all forms of sensory stimulation (white arrows) at 10 – 25 ms after primary sensory cortex activation. The responses are the mean of 20 trials. The image second from the left in the second row (ii) indicates the anterior (A), posterior (P), medial (M) and lateral (L) directions. Modified with permission from Mohajerani, et al., 2013. Please click here to view a larger version of this figure.
This innovative protocol for a large cranial window enables simultaneous imaging over the temporal and parietal areas of the cerebral cortex. Combined with optical imaging, it can help to reveal neural dynamics within cortical areas during spontaneous and stimulus-induced activity. This expansive craniotomy also exposes a large extension of the cortical vasculature network, including the proximal end of the middle cerebral artery (MCA), enabling in vivo imaging of blood flow and direct manipulation of lateral vessels for ischemic models. This technique will be of great use for recently developed lines of mice expressing voltage and calcium indicator proteins23. These mice offer the practical advantage of bypassing the need for incubating voltage sensitive dyes on the cortex. These extrinsic dyes take time to adequately penetrate the brain tissue (~ 60 – 90 min) and are limited by their mild toxicity. Large craniotomies have also been previously utilized to study the developing rat brain with VSDI11. Newborn rats have a much larger head and is comparable in size with adult mice. This affords researchers with a unique opportunity to study developmental problems in neuroscience, albeit not with transgenic mice.
The main limitations of this method are the inability for chronic experiments. The curvature of the skull makes the drilling process more challenging and time consuming than smaller craniotomies. For this large craniotomy, it is vital to position the head with the central suture and squamosal landmarks to be parallel to the focusing plane of the lens. While some distortion of the brain is expected from the curvature of the brain, these are overcome by focusing into the superficial layers of the cortex. This problem is further alleviated by obtaining numerous repetitions of stimulation and averaging. In summary, our large craniotomy technique is widely applicable for the study of current problems in neurobiology.
The authors have nothing to disclose.
This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant #40352, Campus Alberta for Innovation Program Chair, Alberta Alzheimer Research Program to MHM, and NSERC CREATE in BIF doctoral fellowship and AIHS postgraduate fellowship to MK. We thank Pu Min Wang for the development of this protocol and for surgical training, and Behroo Mirza Agha and Di Shao for husbandry.
Heating Pad | FHC | 40-90-2 | |
Fine Scissors | Fine Science Tools | 14058-09 | |
Forceps | Fine Science Tools | 11251-35 | 2 or more pairs are recommended |
Spring scissors | Fine Science Tools | 15000-00, 15000-10 | 1 pair should be designated for dura removal |
Jet tooth shade powder | LANG Dental | Jet Tooth Shade Powder | to be mixed with the Jet Liquid |
Jet tooth shade liquid | LANG Dental | Jet Tooth Shade Liquid | to be mixed wihth the Jet Powder |
Drill Heads – Carbide Burs FG 1/4 389 | Midwest Dental | 385201 | |
Agarose Powder | Sigma-Aldrich | A9793 | |
Gelfoam | Sinclair Dental Canada | Pfizer Gelfoam | |
Isoflurane | Western Drug Distribution Centre Ltd | 124125 | |
Lidocaine 2% Epinephrine | Western Drug Distribution Centre Ltd | 125299 | |
Dexamethazone 5 mg/mL | Western Drug Distribution Centre Ltd | 125231 | |
Butyl cyanoacrylate glue (VetBond) | Western Drug Distribution Centre Ltd | 12612 |