Methods for mapping in vivo protein-DNA interactions are becoming crucial for every aspect of genomic research but they are laborious, costly, and time consuming. Here a commercially available robotic liquid handling system that automates chromatin immunoprecipitation for mapping in vivo protein-DNA interactions with limited amounts of cells is presented.
Chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) is a technique of choice for studying protein-DNA interactions. ChIP-seq has been used for mapping protein-DNA interactions and allocating histones modifications. The procedure is tedious and time consuming, and one of the major limitations is the requirement for high amounts of starting material, usually millions of cells. Automation of chromatin immunoprecipitation assays is possible when the procedure is based on the use of magnetic beads. Successful automated protocols of chromatin immunoprecipitation and library preparation have been specifically designed on a commercially available robotic liquid handling system dedicated mainly to automate epigenetic assays. First, validation of automated ChIP-seq assays using antibodies directed against various histone modifications was shown, followed by optimization of the automated protocols to perform chromatin immunoprecipitation and library preparation starting with low cell numbers. The goal of these experiments is to provide a valuable tool for future epigenetic analysis of specific cell types, sub-populations, and biopsy samples.
随着新一代测序(NGS)技术已经成为普遍和更容易获得,蛋白质-DNA相互作用现在染色质免疫沉淀之后NGS检测(芯片起),使转录因子的发现的全基因组映射的主要方法结合的组蛋白修饰位点或图案。芯片起是提供能够由富集的DNA片段的测量被用于蛋白-DNA相互作用的定量和定性分析整个基因组的高吞吐量数据是有利的。但是,也有在标准芯片起实验一些缺点,例如在获得足够的材料,以创建一个测序文库的难度。
芯片实验分为六个基本步骤包括:1)的交联蛋白质的DNA结合区2)的样品制备,其包括细胞裂解和剪切染色质通过超声处理,3)形成的免疫复合的,4)沉淀免疫复合物,5)洗涤免疫复合的,和富集的材料和分析通过qPCR和NGS 6)洗脱。
一个ChIP实验的成功取决于三个主要因素:一个好的染色质制剂,抗原的原始样品中的量,并且特异性和亲和力的抗体对其关联抗原。一个主要的限制是对高量的,以便获得足够的富集的DNA,以创建一个测序文库起始细胞数量的要求。对于谁与有限的样本数量,如活检标本或细胞亚群工作的科学家,芯片起实验是非常具有挑战性的。最近的研究已经表明,芯片起测定法能够进行与低量电池1,2的工作的时候。Diagenode开发了机器人液体处理系统与细胞数目有限的开始时,可以完全自动化芯片起实验。
自动化提供许多优势的ChIP-SEQ样品手工编制,因为它减少人为错误,降低了变异,降低实验成本。用于染色质免疫沉淀和库制备半自动化协议已被报道,但这些研究都没有一直使用低细胞数3,4,5,6时所显示的数据。
在本文中一个完整的自动化工作流描述了用于在使用磁性珠为基础的技术,并能解决在协议优化多个参数的机器人液体处理系统既染色质免疫沉淀和库制剂测定。这里,自动芯片起实验已经成功完成对细胞数目有限的具有简化,标准化,并提供了可靠的解决方案,以研究在小细胞群体的后生型材的目标。本文描述的自动化贴片协议已使用特定的组蛋白抗体和试剂B进行了优化HeLa细胞旦是工作流可以适合于其它细胞系和抗体与相应的实验优化。
染色质免疫沉淀,随后通过测序现在是一个标准程序。这里一个自动化芯片起协议,可以产生与起始材料的少至10,000个细胞染色质的表观遗传轮廓呈现。
自动化芯片和文库制备试验允许标准化芯片优化程序,减少实验变异。这里介绍的液体处理系统消除了许多带芯片减少了手的时间只有30分钟,相关的手工程序,减少了样品损失,并且能够进行精确的芯片起与库输入短短皮克。为了实现成功的自动化芯片起实验中,它也是重要的使用。在每个实验的系统,高品质剪切染色质制剂与芯片起同类抗体使用磁性珠为基础的技术,并提供了灵活地改变主要实验参数,如温育时间为抗体涂层荷兰国际集团和免疫步骤或洗涤条件允许研究人员进行所有必要的试验芯片,以次优化改造。自动化系统是“开放”的平台,还允许多个并行试剂比较,实验条件为每个单独的细胞系和抗体优化,使各种类型和染色质的浓度,不同的抗体,甚至不同类型的磁性的直接比较珠。
一项所述的自动化系统的局限性是在体积范围从5微升至200微升的自动化的所有协议的需要。但是,该实验的这种自动化平台的小型化也能够节省在试剂成本。
除了在本研究中所述的协议,该系统的适应性,也可以自动多种其他基于磁珠应用,如免疫沉淀一次甲基化DNA(MeDIP和MethylCap技术),hydroxylmethylated脱氧核糖核酸(hMEDIP),连续染色质免疫沉淀(ReChIP),核糖核酸免疫沉淀(RNA-IP),亚硫酸氢盐转化的免疫沉淀和DNA的纯化实验的捕获。
The authors have nothing to disclose.
This work was supported by the BLUERPINT EU grant (BLUEPRINT – A BLUEPRINT of Haematopoietic Epigenomes). We also thank the Walloon Region (DG06) for its financial support.
Product Description | Company | Catalogue number | コメント |
PBS | Life technologies | 14190-094 | |
Trypsin-EDTA | Sigma | T3924-100ML | |
Formaldehyde 37% | Sigma | F8775-25 | |
1,25M Glycine Solution | Diagenode | C01020010 | Component of the ideal ChIP-seq kit |
Lysis Buffer iL1 | Diagenode | C01020010 | Component of the ideal ChIP-seq kit |
Lysis Buffer iL2 | Diagenode | C01020010 | Component of the ideal ChIP-seq kit |
Shearing Buffer iS1 | Diagenode | C01020010 | Component of the ideal ChIP-seq kit |
Protease Inhibitors Mix (200x) | Diagenode | C01010130 | Component of the Auto True Micro ChIP kit |
HBSS (no calcium, no magnesium, no phenol red) | Life technologies | 14175-053 | |
Lysis Buffer tL1 | Diagenode | C01010130 | Component of the Auto True Micro ChIP kit |
ChIP Buffer tC1 | Diagenode | C01010130 | Component of the Auto True Micro ChIP kit |
ideal ChIP-seq kit | Diagneode | C01010051 | |
ChIP-Buffer H | Diagenode | C01010020 | Component of the Auto Histone ChIP-seq kit |
Auto Histone ChIP-seq kit | Diagenode | C01010020 | |
Auto True Micro ChIP kit | Diagenode | C01010130 | |
H3K79me3 polyclonal antibody-Classic | Diagenode | C15310068 | |
H3K27me3 polyclonal antibody-Classic | Diagenode | C15410069 | |
H3K4me3 polyclonal antibody-Classic | Diagenode | C15410030 | |
H3K4me2 polyclonal antibody-Classic | Diagenode | C15410035 | |
H3K9ac polyclonal antibody-Premium | Diagenode | C15410004 | |
H3K9/14ac polyclonal antibody-Premium | Diagenode | C15410200 | |
H3K36me3 polyclonal antibody-Premium | Diagenode | C15410058 | |
H3K9me3 polyclonal antibody-Premium | Diagenode | C15410193 | |
Rabbit IgG | Diagenode | C15410206 | |
Protein-A coated paramagnetic beads | Diagenode | C01010020 | |
Auto IPure | Diagenode | C03010010 | |
MicroChIP DiaPure columns | Diagenode | C03040001 | |
Universal SyberGreenMaster Mix 1.25ml | Diagenode | DMMLD2D100 | |
Quant-IT dsDNA | Invitrogen | Q32854 | |
Illumina Sample Preparation kit fro Genomic DNA | Illumina | FC-121-3001 | |
Illumina True-seq kit ChIP library Prep kit | Illumina | IP-202-1012 | |
MicroPlex Library Preparation Kit | Diagenode | C05010010 | |
Agencourt AMPure XP beads | Beckman Coulter | A63881 | |
Illumina Library prep Quantification kit | Kapa Biosystems | KK4844 | |
IP-Star Compact Automated System | Diagenode | B03000002 | |
Bioruptor Plus | Diagenode | B01020001 | |
Bioruptor Pico | Diagenode | B01060001 | |
Qubit system | Invitrogen | Q32857 | |
Illumina Hiseq systems | Illumina |